Math Review

CSE 373
Data Structures & Algorithms
Ruth Anderson
Spring 2010

Today’s Outline

• Announcements
 – Assignment #1 due Thurs, April 8 at 11:45pm
 – Email sent to cse373 mailing list – did you get it?
 – Have you installed Eclipse and Java yet?

• Queues and Stacks
• Math Review
 – Proof by Induction
 – Powers of 2
 – Binary numbers
 – Exponents and Logs

Mathematical Induction
Suppose we wish to prove that:
For all \(n \geq n_0 \), some predicate \(P(n) \) is true.
We can do this by proving two things:
1. \(P(n_0) \) --- this is called the “basis.”
2. If \(P(k) \) then \(P(k+1) \) -- this is called the “induction step.”

Example: Basis Step
Prove for all \(n \geq 1 \), sum of first \(n \) powers of 2 = \(2^n - 1 \)
\[
1 + 2 + 4 + \ldots + 2^{k-1} = 2^k - 1
\]
Proof by induction:
Basis with \(n_0 = 1 \):
\[
(\text{left hand side}) \quad 2^{k-1} = 2^0 = 1
\]
\[
(\text{right hand side}) \quad 2^1 - 1 = 2 - 1 = 1
\]
So true for \(n_0 = 1 \)

Example: Inductive Step
* Induction hypothesis: (Assume this is true)
\[1 + 2 + 4 + \ldots + 2^{k-1} = 2^k - 1\]
* Induction step: Now add \(2^k \) to both sides:
\[1 + 2 + 4 + \ldots + 2^{k-1} + 2^k = 2^k - 1 + 2^k\]
\[= 2(2^k) - 1\]
\[= 2^{k+1} - 1\]
Therefore if the equation is valid for \(n = k \), it must also be valid for \(n = k+1 \).
* Summary: It is valid for \(n=1 \) (basis) and by the induction step it is therefore valid for \(n=2, n=3, \ldots \)
It is valid for all integers greater than 0.

Powers of 2

• Many of the numbers we use in Computer Science are powers of 2
• Binary numbers (base 2) are easily represented in digital computers
 – each “bit” is a 0 or a 1
 – an \(n \)-bit wide field can represent how many different things?
N bits can represent how many things?

<table>
<thead>
<tr>
<th># Bits</th>
<th>Patterns</th>
<th># of patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unsigned binary numbers

- For unsigned numbers in a fixed width field
 - the minimum value is 0
 - the maximum value is \(2^n - 1\), where \(n\) is the number of bits in the field
 - The value is \(\sum_{i=0}^{i=n-1} a_i 2^i\)
- Each bit position represents a power of 2 with \(a_i = 0\) or \(a_i = 1\)

Signed Numbers?

Logarithms and Exponents

- Definition: \(\log_2 x = y\) if and only if \(x = 2^y\)
 - \(8 = 2^3\), so \(\log_2 8 = 3\)
 - \(65536 = 2^{16}\), so \(\log_2 65536 = 16\)
- Notice that \(\log_2 n\) tells you how many bits are needed to distinguish among \(n\) different values.
 - 8 bits can hold any of 256 numbers, for example: 0 to \(2^8-1\), which is 0 to 255
 - \(\log_2 256 = 8\)

One function that grows very quickly, One that grows very slowly

\[y = 2^x \quad y = x \quad y = \log_2 x \]

\[x \in [0, 10] \quad x \in [1, 16] \quad x \in [1, 16] \]
Floor and Ceiling

\[\lfloor X \rfloor \text{ Floor function: the largest integer } \leq X \]
\[\lceil X \rceil \text{ Ceiling function: the smallest integer } \geq X \]

\[\lfloor 2.7 \rfloor = 2 \quad \lceil -2.7 \rceil = -3 \quad \lfloor 2 \rfloor = 2 \]

Facts about Floor and Ceiling

1. \(X - 1 < \lfloor X \rfloor \leq X \)
2. \(X \leq \lceil X \rceil < X + 1 \)
3. \(\lceil n/2 \rceil + \lfloor n/2 \rfloor = n \) if \(n \) is an integer

Properties of logs

- We will assume logs to base 2 unless specified otherwise.
- \(8 = 2^3 \), so \(\log_2 8 = 3 \), so \(2^{\log_2 8} = \) __________

Show:

\[\log (A \cdot B) = \log A + \log B \]

\(A = 2^{\log_2 A} \) and \(B = 2^{\log_2 B} \)

\[A \cdot B = 2^{\log_2 A} \cdot 2^{\log_2 B} = 2^{\log_2 A + \log_2 B} \]

So:

\[\log_2 A \cdot B = \log_2 A + \log_2 B \]

- Note: \(\log AB \neq \log A \cdot \log B \) !!

Other log properties

- \(\log A/B = \log A - \log B \)
- \(\log (A^B) = B \log A \)
- \(\log \log X < \log X < X \) for all \(X > 0 \)
 - \(\log \log X = Y \) means:
 - \(\log X \) grows more slowly than \(X \)
 - called a “sub-linear” function

Note: \(\log \log X \neq \log \log X \)

\[\log^2 X = \log (\log X) \) aka “log-squared”

A log is a log is a log

- “Any base \(B \) log is equivalent to base 2 log within a constant factor.”

\[\frac{\log_B X}{\log_2 X} = \frac{\log_2 B}{\log_2 X} \text{ by def. of logs} \]

\[\log_B X = \log_2 X \cdot \frac{\log_2 B}{\log_2 X} \text{ substitute } \frac{\log_2 B}{\log_2 X} = \log_B 2 \]

Arithmetic Sequences

\(N = \{0, 1, 2, \ldots \} \) = natural numbers
\[\{0, 1, 2, \ldots \} \text{ is an infinite arithmetic sequence} \]
\[\{a, a+d, a+2d, a+3d, \ldots \} \text{ is a general infinite arith. sequence.} \]

There is a constant difference between terms.

\[1+2+3+\ldots+N = \sum_{i=1}^{N} i = \frac{N(N+1)}{2} \]
Algorithm Analysis Examples

Consider the following program segment:

```plaintext
x = 0;
for i = 1 to N do
  for j = 1 to i do
    x := x + 1;
```

What is the value of x at the end?

Analyzing the Loop

Total number of times x is incremented is executed:

\[
1 + 2 + 3 + \ldots + N = \frac{N(N+1)}{2}
\]

Congratulations - You’ve just analyzed your first program!

- Running time of the program is proportional to \(N(N+1)/2\) for all N
- Big-O ??

Asymptotic Analysis

What we want

- Rough Estimate
- Ignores Details

Big-O Analysis

- Ignores “details”

Analysis of Algorithms

- Efficiency measure
 - how long the program runs time complexity
 - how much memory it uses space complexity
- For today, we’ll focus on time complexity only

- Why analyze at all?
Asymptotic Analysis

• Complexity as a function of input size n
 $T(n) = 4n + 5$
 $T(n) = 0.5 \cdot n \cdot \log n - 2n + 7$
 $T(n) = 2^n + n^3 + 3n$

• What happens as n grows?

Why Asymptotic Analysis?

• Most algorithms are fast for small n
 – Time difference too small to be noticeable
 – External things dominate (OS, disk I/O, …)

• BUT n is often large in practice
 – Databases, internet, graphics, …

• Time difference really shows up as n grows!

Big-O: Common Names

- constant: $O(1)$
- logarithmic: $O(\log n)$
- linear: $O(n)$
- quadratic: $O(n^2)$
- cubic: $O(n^3)$
- polynomial: $O(n^k)$ (k is a constant)
- exponential: $O(c^n)$ (c is a constant > 1)