Graphs: Definitions and Representations
(Chapter 9)

CSE 373
Data Structures and Algorithms

Today’s Outline

• Admin:
 – Midterm #2, Wed Nov 17th.
 – HW #5 due Monday, Nov 22 at 11:45pm

• Graphs
 – Representations
 – Topological Sort

Graph... ADT?

• Not quite an ADT…
 operations not clear

• A formalism for representing relationships between objects
 Graph \(G = (V, E) \)
 – Set of vertices:
 \(V = \{v_1, v_2, \ldots, v_n\} \)
 – Set of edges:
 \(E = \{e_1, e_2, \ldots, e_m\} \)
 where each \(e_i \) connects two vertices \((v_{i1}, v_{i2}) \)

Han
Leia
Luke

More Definitions:
Simple Paths and Cycles

A simple path repeats no vertices (except that the first can be the last):
\(p = \{\text{Seattle, Salt Lake City, San Francisco, Dallas} \} \)
\(p = \{\text{Seattle, Salt Lake City, Dallas, San Francisco, Seattle} \} \)

A cycle is a path that starts and ends at the same node:
\(p = \{\text{Seattle, Salt Lake City, Dallas, San Francisco, Seattle} \} \)
\(p = \{\text{Seattle, Salt Lake City, Seattle, San Francisco, Seattle} \} \)

A simple cycle is a cycle that repeats no vertices except that the first vertex is also the last (in undirected graphs, no edge can be repeated)

Trees as Graphs

• Every tree is a graph!
• Not all graphs are trees!

A graph is a tree if
 – There are no cycles (directed or undirected)
 – There is a path from the root to every node

A
B
C
D
E
F
G
H
Directed Acyclic Graphs (DAGs)

DAGs are directed graphs with no (directed) cycles.

Aside: If program call-graph is a DAG, then all procedure calls can be in-lined

Graph Connectivity

Undirected graphs are connected if there is a path between any two vertices

Directed graphs are strongly connected if there is a path from any one vertex to any other

Directed graphs are weakly connected if there is a path between any two vertices, ignoring direction

A complete graph has an edge between every pair of vertices

Graph Representations

0. List of vertices + list of edges
1. 2-D matrix of vertices (marking edges in the cells) “adjacency matrix”
2. List of vertices each with a list of adjacent vertices “adjacency list”

Things we might want to do:
• iterate over vertices
• iterate over edges
• iterate over vertices adj. to a vertex
• check whether an edge exists

Some Applications:
Moving Around Washington

What’s the shortest way to get from Seattle to Pullman?

Edge labels:

Some Applications:
Reliability of Communication

If Wenatchee’s phone exchange goes down, can Seattle still talk to Pullman?
Some Applications: Bus Routes in Downtown Seattle

If we’re at 3rd and Pine, how can we get to 1st and University using Metro?

Representation 1: Adjacency Matrix
A $|V| \times |V|$ array in which an element (u, v) is true if and only if there is an edge from u to v.

Representation 2: Adjacency List
A $|V|$-ary list (array) in which each entry stores a list (linked list) of all adjacent vertices.

Application: Topological Sort
Given a directed graph, $G = (V, E)$, output all the vertices in V such that no vertex is output before any other vertex with an edge to it.

Is the output unique?
Valid Topological Sorts:

Student Activity:

```cpp
void Graph::topsort()
{
    Vertex v, w;
    labelEachVertexWithItsIn-degree();
    for(int count=0; count<NUM_VERTICES; count++)
    {
        v = findNewVertexOfDegreeZero();
        v.topoNum = count;
        for each w adjacent to v
            w.indegree--;
    }
}
```

Student Activity:

```cpp
void Graph::topsort()
{
    Queue q(NUM_VERTICES);  int counter = 0; Vertex v, w ;
    labelEachVertexWithItsIn-degree();
    q.makeEmpty();
    for each vertex v
        if (v.indegree == 0)
            q.enqueue(v);
    while (!q.isEmpty())
    {
        v = q.dequeue();
        v.topologicalNum = ++counter;
        for each w adjacent to v
            if (--w.indegree == 0)
                q.enqueue(w);
    }
}
```

Runtime: