Priority Queues

CSE 373
Data Structures & Algorithms
Ruth Anderson

Today’s Outline

• Announcements
 – Homework #3 due Thurs, Oct 28, 11:45pm.

• Today’s Topics:
 – Priority Queues
 • Binary Min Heap - buildheap
 • D-Heaps
 • Leftist Heaps

Facts about Binary Min Heaps
Observations:
• finding a child/parent index is a multiply/divide by two
• operations jump widely through the heap
• each percolate step looks at only two new nodes
• inserts are at least as common as deleteMins

Realities:
• division/multiplication by powers of two are equally fast
• looking at only two new pieces of data: bad for cache!
• with huge data sets, disk accesses dominate

Representing Complete Binary Trees in an Array

From node i:
 left child: 2i + 1
 right child: 2i + 2
 parent: i

implicit (array) implementation:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

A Solution: d-Heaps

• Each node has d children
• Still representable by array
• Good choices for d:
 – (choose a power of two for efficiency)
 – fit one set of children in a cache line
 – fit one set of children on a memory page/disk block
Operations on d-Heap

• Insert : runtime =

• deleteMin: runtime =

Priority Queues
(Leftist Heaps)

One More Operation

• Merge two heaps. Ideas?

New Operation: Merge

Given two heaps, merge them into one heap
– first attempt: insert each element of the smaller heap into the larger.
 runtime:
– second attempt: concatenate binary heaps’ arrays and run buildHeap.
 runtime:

Leftist Heaps

Idea:
Focus all heap maintenance work in one small part of the heap

Leftist heaps:
1. Most nodes are on the left
2. All the merging work is done on the right

Definition: Null Path Length
null path length (npl) of a node x = the number of nodes between x and a null in its subtree

OR
$npl(x) = \min$ distance to a descendant with 0 or 1 children

• $npl(null) = -1$
• $npl(leaf, aka zero children) = 0$
• $npl(node with one child) = 0$

Equivalent definitions:
1. $npl(x)$ is the height of largest perfect subtree rooted at x
2. $npl(x) = 1 + \min\{npl(left(x)), npl(right(x))\}$
Leftist Heap Properties

- Heap-order property
 - parent’s priority value is ≤ to children’s priority values
 - result: minimum element is at the root

- Leftist property
 - For every node \(x \), \(npl(\text{left}(x)) \geq npl(\text{right}(x)) \)
 - result: tree is at least as “heavy” on the left as the right

Are leftist trees…
- complete?
- balanced?

Right Path in a Leftist Tree is Short (#1)

Claim: The right path is as short as any in the tree.

Proof: (By contradiction)

Pick a shorter path: \(D_1 < D_2 \)

- Say it diverges from right path at \(x \)
 - \(npl(\text{left}(x)) \leq D_1 \) because of the path of length \(D_1 - 1 \) to null
 - \(npl(\text{right}(x)) \geq D_2 \) because every node on right path is leftist

Leftist property at \(x \) violated!

Right Path in a Leftist Tree is Short (#2)

Claim: If the right path has \(r \) nodes, then the tree has at least \(2^{r-1} \) nodes.

Proof: (By induction)

- **Base case:** \(r = 1 \). Tree has at least \(2^0 - 1 = 1 \) node
- **Inductive step:** assume true for \(r' < r \). Prove for tree with right path at least \(r \).
 1. Right subtree: right path of \(r-1 \) nodes
 \(\Rightarrow 2^{r-1} - 1 \) right subtree nodes (by induction)
 2. Left subtree: also right path of length at least \(r-1 \) (by previous slide)
 \(\Rightarrow 2^{r-1} - 1 \) left subtree nodes (by induction)

Total tree size: \(2^{r-1} - 1 + 2^{r-1} - 1 + 1 = 2^r - 1 \)

Why do we have the leftist property?

Because it guarantees that:

- the right path is really short compared to the number of nodes in the tree
- A leftist tree of \(N \) nodes, has a right path of at most \(\log (N+1) \) nodes

Idea – perform all work on the right path

Merge two heaps (basic idea)

- Put the smaller root as the new root,
- Hang its left subtree on the left.
- Recursively merge its right subtree and the other tree.
Merging Two Leftist Heaps

- \(\text{merge}(T_1, T_2) \) returns one leftist heap containing all elements of the two (distinct) leftist heaps \(T_1 \) and \(T_2 \)

\[
\begin{align*}
T_1 & \quad L_1 \quad R_1 \\
L_2 & \quad R_2 \\
T_2 & \quad L_3 \quad R_3 \\
\end{align*}
\]

\(a < b \)

Merge Continued

\[
\begin{align*}
\text{merge} & \quad T_1 \quad T_2 \\
\end{align*}
\]

\(a \quad \text{L} \quad a \quad \text{R} \)

\(b \quad \text{L} \quad b \quad \text{R} \)

\(b \quad \text{L} \quad b \quad \text{R} \)

If \(\text{npl}(R') > \text{npl}(L_1) \)

\(R' = \text{Merge}(R_1, T_3) \)

runtime:

Merge Example

\[
\begin{align*}
\text{merge} & \quad T_1 \quad T_2 \\
\text{merge} & \quad T_1 \quad T_2 \\
\text{merge} & \quad T_1 \quad T_2 \\
\end{align*}
\]

(special case)

Sewing Up the Example

\[
\begin{align*}
\text{merge} & \quad T_1 \quad T_2 \\
\text{merge} & \quad T_1 \quad T_2 \\
\end{align*}
\]

Done?

Finally…

\[
\begin{align*}
\text{merge} & \quad T_1 \quad T_2 \\
\end{align*}
\]

Merge Two Leftist Heaps

Student Activity
Other Heap Operations

- insert ?
- deleteMin ?

Operations on Leftist Heaps

- merge with two trees of total size n: $O(\log n)$
- insert with heap size n: $O(\log n)$
 - pretend node is a size 1 leftist heap
 - insert by merging original heap with one node heap

- deleteMin with heap size n: $O(\log n)$
 - remove and return root
 - merge left and right subtrees

Leftist Heaps: Summary

Good
-
-

Bad
-
-

Amortized Time

amortized time:
Running time limit resulting from “writing off” expensive runs of an algorithm over multiple cheap runs of the algorithm, usually resulting in a lower overall running time than indicated by the worst possible case.

If M operations take total $O(M \log N)$ time,
amortized time per operation is $O(\log N)$

Difference from average time:

Skew Heaps

Problems with leftist heaps
- extra storage for npl
- extra complexity/logic to maintain and check npl
- right side is “often” heavy and requires a switch

Solution: skew heaps
- “blindly” adjusting version of leftist heaps
- merge always switches children when fixing right path
- amortized time for: merge, insert, deleteMin = $O(\log n)$
- however, worst case time for all three = $O(n)$

Merging Two Skew Heaps

Only one step per iteration, with children always switched
Skew Heap Code

```c
void merge(heap1, heap2) {
    case {
        heap1 == NULL: return heap2;
        heap2 == NULL: return heap1;
        heap1.findMin() < heap2.findMin():
            temp = heap1.right;
            heap1.right = heap1.left;
            heap1.left = merge(heap2, temp);
            return heap1;
        otherwise:
            return merge(heap2, heap1);
    }
}
```

Runtime Analysis:
Worst-case and Amortized
- No worst case guarantee on right path length!
- All operations rely on merge

\[\text{worst case complexity of all ops} = \]
- Amortized Analysis (Chapter 11)
- Result: \(M \) merges take time \(M \log n \)

\[\Rightarrow \text{amortized complexity of all ops} = \]

Comparing Priority Queues
- Binary Heaps
- Leftist Heaps
- d-Heaps
- Skew Heaps

Student Activity