Priority Queues:
Binary Min Heaps

CSE 373
Data Structures and Algorithms

10/15/2010 1

Today’s Outline

¢ Announcements
— Midterm #1, Friday Oct 22.
— Assignment #3 coming soon.

« Today’s Topics:
— Dictionary
« Balanced Binary Search Trees - (AVL Trees)
— Priority Queues
« Binary Min Heap

10/15/2010 2

Priority Queue ADT

1. PQueue data collection of data witlpriority

2. PQueue operations
— insert

— deleteMin
(also: create, destroy, is_empty)

3. PQueue property for two elements in the queue,
andy, if x has dower priority valuethany, x will be
deleted beforg

10/15/2010 3

Applications of the Priority Q

 Select print jobs in order of decreaslaggth

« Forward packets on network routers in order of
urgency

» Select mostrequentsymbols for compression
e Sort numbers, pickingiinimumfirst

* Anything greedy

10/15/2010 4

Implementations of Priority Queue A

insert deleteMin

Unsorted list (Array)

Unsorted list (Linked-List)

Sorted list (Array)

Sorted list (Linked-List)

Binary Search Tree (BST)

10/15/2010 5

Representing Complete
Binary Trees in an Array

‘_ From node:

left child:

1&@@ &5 right child:

parent:

implicit (array) implementation:

[lalelclofef[rfefni]afr]e]

0 1 2 3 4 5 6 7 8 9 0 11 12

10/15/2010 6

13

HeapOrder Property

Heap order property: For every non-root node X,
the value in the parent of X is less than (or equal
to) the value in X.

@i@ ® 3% & ®

not a heap

10/15/2010 8

Heap Operations

* findMin:
* insert(val): percolate up.
* deleteMin: percolate down.

\
€@ @D
@D

Heap — Insert(val)

Basic Idea:
1. Putval at “next” leaf position

2. Repeatedly exchange node with its parent if
needed

10/15/2010 10

Insert pseudo Code (optimized)

void insert(Object o) { int percolateUp(int hole,

assert(!isFull()); oj ect val) {
while (hole > 1 &&

si ze++;
_ val < Heap[hole/2])
newPos = Heap[hol e] = Heap[hol e/ 2] ;
per col at eUp(si ze, 0) ; hole /= 2;

Heap[newPos] = o; }

} return hol e;
}

runtime:

(Java code in book

10/15/2010 11

Insert: percolate up
@

© TS
B

10/15/2010 12

Heap — Deletemin

Basic Idea:
1. Remove root (that is always the min!)

2. Put“last” leaf node at root

3. Find smallest child of node

4. Swap node with its smallest child if needed.
5. Repeat steps 3 & 4 until no swaps needed.
10/15/2010 13

DeleteMin pseudo Cod®ptimized)

int percol ateDown(int hole,
bj ect deleteMn() { Ohj ect val) {
assert (!isEmpty()); while (2*hole <= size) {

left = 2*hol e;
returnVal = Heap[1]; right = left + 1;

size--; if (right < size &
newPos = Heap[right] < Heap[left])
per col at eDown(1, target = right;
Heap[si ze+1]); el se
Heap[newPos] = target = left;

if (Heap[target] < val) {

Heap[size + 1]; Heap[hol e] = Heap[target];
return returnval; hole = target;
} }
. el se
runtime: br eak:
}
(Java code in book), return hole;
10/15/2010 14

DeleteMin: percolate down

10/15/2010 15

Insert: 16, 32, 4, 69, 105, 43, 2

10/15/2010 16

Other Priority Queue Operations

e decreaseKey
— given a pointer to an object in the queue, redisgeriority value

Solution: change priority and

* increaseKey
— given a pointer to an object in the queue, in@déaspriority value

Solution: change priority and

Why do we need gointer? Why not simply data value?

10/15/2010 17

Other Heap Operations

decreaseKey(objPtr, amount):raise the priority of a object,
percolate up

increaseKey(objPtr, amount):lower the priority of a object,
percolate down

remove(objPtr): remove a object, move to top, them delete.
1) decreaseKegpjPtr, o)

2) deleteMin()
Worst case Running time for all of these:
FindMax?
ExpandHeap — when heap fills, copy into new space.

10/15/2010 18

Binary Min Heaps (summary)

« insert: percolate up®@(log N) time.
« deleteMin: percolate down@(log N) time.

 Build Heap?

10/15/2010 19

BuildHeap: Floyd’'s Method

2[5 1] 3]w]6]0]ale]1]7]2]

Add elements arbitrarily to form a complete tree.
Pretend it's a heap and fix the heap-order property

10/15/2010 @ @ @ @ 20

Buildheap pseudocode

private void buil dHeap() {
for (int i =currentSize/2; i >0; i--)
percol ateDown(i);

BuildHeap: Floyd’'s Method
a2 a2

}
runtime:
10/15/2010 21
Finally...
. ”
.(
@ ©® O
LELOW
runtime:
10/15/2010 23

Facts about Binary Min Heaps
Observations:
« finding a child/parent index is a multiply/dividiy two
« operations jump widely through the heap
» each percolate step looks at only two new nodes
* inserts arat least as common as deleteMins

Realities:

« division/multiplication bypowers of two are equally fast
« looking at onlytwo new pieces of data: bad for cache!
« with huge data sets, disk accesses dominate

10/15/2010 24

