Graphs: Definitions and Representations

CSE 373
Data Structures and Algorithms

Today’s Outline

• Announcements
 – HW 6/7 on graphs posted later today

• Graphs
 – Representations
 – Topological Sort

Graph... ADT?

• Not quite an ADT... operations not clear

• A formalism for representing relationships between objects
 Graph \(G = (V, E) \)
 – Set of vertices:
 \(V = \{v_1, v_2, ..., v_n\} \)
 – Set of edges:
 \(E = \{e_1, e_2, ..., e_m\} \)
 where each \(e_i \) connects two vertices \((v_{i1}, v_{i2}) \)

Graph Definitions

In directed graphs, edges have a specific direction:

\(V = \{\text{Han}, \text{Leia}, \text{Luke}\} \)
\(E = \{ (\text{Luke}, \text{Leia}), \)
 \((\text{Han}, \text{Leia}), \)
 \((\text{Leia}, \text{Han}) \} \)

In undirected graphs, they don’t (edges are two-way):

\(V \) is adjacent to \(u \) if \((u, v) \in E \)

More Definitions:

Simple Paths and Cycles

A simple path repeats no vertices (except that the first can be the last):

\(p = \{\text{Seattle, Salt Lake City, San Francisco, Dallas}\} \)
\(p = \{\text{Seattle, Salt Lake City, Dallas, San Francisco, Seattle}\} \)

A cycle is a path that starts and ends at the same node:

\(p = \{\text{Seattle, Salt Lake City, Dallas, San Francisco, Seattle}\} \)
\(p = \{\text{Seattle, Salt Lake City, Seattle, San Francisco, Seattle}\} \)

A simple cycle is a cycle that repeats no vertices except that the first vertex is also the last (in undirected graphs, no edge can be repeated)

Trees as Graphs

• Every tree is a graph!
• Not all graphs are trees!

A graph is a tree if
 – There are no cycles (directed or undirected)
 – There is a path from the root to every node
Directed Acyclic Graphs (DAGs)

DAGs are directed graphs with no (directed) cycles.

Aside: If program call-graph is a DAG, then all procedure calls can be in-lined.

Graph Connectivity

Undirected graphs are connected if there is a path between any two vertices.

Directed graphs are strongly connected if there is a path from any one vertex to any other.

Directed graphs are weakly connected if there is a path between any two vertices, ignoring direction.

A complete graph has an edge between every pair of vertices.

Graph Representations

0. List of vertices + list of edges
1. 2-D matrix of vertices (marking edges in the cells) “adjacency matrix”
2. List of vertices each with a list of adjacent vertices “adjacency list”

Things we might want to do:
• iterate over vertices
• iterate over edges
• iterate over vertices adj. to a vertex
• check whether an edge exists

Some Applications:
Moving Around Washington

What’s the shortest way to get from Seattle to Pullman?

Edge labels:

Some Applications:
Reliability of Communication

If Wenatchee’s phone exchange goes down, can Seattle still talk to Pullman?
Some Applications: Bus Routes in Downtown Seattle

If we're at 3rd and Pine, how can we get to 1st and University using Metro?

Representation 1: Adjacency Matrix

A $|V| \times |V|$ array in which an element (u, v) is true if and only if there is an edge from u to v.

<table>
<thead>
<tr>
<th>Han</th>
<th>Leia</th>
<th>Luke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Han</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luke</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

space requirements: runtime:

Representation 2: Adjacency List

A $|V|$-ary list (array) in which each entry stores a list (linked list) of all adjacent vertices.

<table>
<thead>
<tr>
<th>Han</th>
<th>Leia</th>
<th>Luke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Han</td>
<td>Leia</td>
<td></td>
</tr>
<tr>
<td>Leia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

space requirements: runtime:

Representation

- adjacency matrix:
 $A[u][v] = \begin{cases} \text{weight}, & \text{if } (u, v) \in E \\ 0, & \text{if } (u, v) \notin E \end{cases}$

Representation

- adjacency list:

```
1 2 3 4
1
2
3
4
```
Application: Topological Sort
Given a directed graph, $G = (V, E)$, output all the vertices in V such that no vertex is output before any other vertex with an edge to it.

Is the output unique?

Valid Topological Sorts:

Student Activity:
```cpp
void Graph::topsort(){
    Vertex v, w;
    labelEachVertexWithItsIn-degree();
    for(int count=0; count<NUM_VERTICES; count++){
        v = findNewVertexOfDegreeZero();
        v.topoNum = count;
        for each w adjacent to v
            w.indegree--;
    }
}
```

Student Activity:
```cpp
void Graph::topsort(){
    Queue q(NUM_VERTICES);  int counter = 0; Vertex v, w;
    labelEachVertexWithItsIn-degree();
    q.makeEmpty();
    for each vertex v
        if (v.indegree == 0)
            q.enqueue(v);
    while (!q.isEmpty()){
        v = q.dequeue();
        v.topologicalNum = ++counter;
        for each w adjacent to v
            if (--w.indegree == 0)
                q.enqueue(w);
    }
}
```