Hash Tables

CSE 373
Data Structures & Algorithms
Ruth Anderson

Today’s Outline

• Announcements
 – Assignment #4 due this Friday Feb 13th at the beginning of lecture.

• Today’s Topics:
 – Disjoint Sets & Dynamic Equivalence
 – Hashing

Dictionary Implementations

<table>
<thead>
<tr>
<th></th>
<th>Unsorted linked list</th>
<th>Sorted Array</th>
<th>Binary Search Tree</th>
<th>AVL Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert</td>
<td></td>
<td></td>
<td>O(log N)</td>
<td></td>
</tr>
<tr>
<td>Find</td>
<td></td>
<td>O(N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td></td>
<td>O(N)</td>
<td>O(log N)</td>
<td></td>
</tr>
</tbody>
</table>

Constant Time Access

Data Set:
• 100 students
• Keys = Student numbers between 0 and 99.

Solution:
• Array of size 0-99.
• One-to-one mapping: e.g. student number 2 goes in location 2

Hash Tables

• A hash table is an array of some fixed size.
• General idea:

 Key Space (e.g., integers, strings) Table Size – 1

 Hash Function: h(K)

 0 1 2 …

 Hash Table

 0 1 2 …
Hash Functions

1. simple/fast to compute,
2. Avoid collisions
3. have keys distributed evenly among cells.

Perfect Hash function:

Sample Hash Functions:

1. \(h(s) = s_0 \mod \text{TableSize} \)
2. \(h(s) = \left(\sum_{i=0}^{k-1} s_i \right) \mod \text{TableSize} \)
3. \(h(s) = \left(\sum_{i=0}^{k-1} s_i - 26 \right) \mod \text{TableSize} \)

Collison Resolution

Collision: when two keys map to the same location in the hash table.

Two ways to resolve collisions:
1. Separate Chaining
2. Open Addressing (linear probing, quadratic probing, double hashing)
Separate Chaining

\[h(K) = K \mod 10 \]

Insert:
- 10
- 22
- 107
- 12
- 42

Separate chaining:
All keys that map to the same hash value are kept in a list (or “bucket”).

Analysis of Find

The load factor, \(\lambda \), of a hash table is the ratio:

\[
\lambda = \frac{\text{# of elements}}{\text{table size}}
\]

For separate chaining, \(\lambda = \text{average # of elements in a bucket} \)

Average # of values needed to examine for a:
- unsuccessful find:
- successful find:

How Big Should the Hash Table Be?

For Separate Chaining, if we want \(\lambda = 1 \)
(e.g. the average # of values per bucket = 1)
- How large should I make the hash table, in terms of \(N \)?

TableSize =

Open Addressing

\[h(K) = K \mod 10 \]

Insert:
- 38
- 19
- 8
- 109
- 10

Linear Probing: after checking \(h(k) \), try \(h(k)+1 \), if that is full, try \(h(k)+2 \), then try \(h(k)+3 \), etc.

Terminology Alert!

“WeOpen Hashing” equals “Closed Hashing”

“Separate Chaining” “Open Addressing”

Real-life data tends to have a pattern
Being a multiple of 11 is usually not the pattern ☺
Linear Probing

\[f(i) = i \]

- Probe sequence:
 0th probe = \(h(k) \mod \text{TableSize} \)
 1st probe = \((h(k) + 1) \mod \text{TableSize} \)
 2nd probe = \((h(k) + 2) \mod \text{TableSize} \)
 \ldots
 \(ith \) probe = \((h(k) + i) \mod \text{TableSize} \)

Write pseudocode for find\((k) \) for Open Addressing with linear probing
- Find\((k) \) returns \(i \) where \(T(i) = k \)

Linear Probing – Clustering

- For any \(\lambda < 1 \), linear probing will find an empty slot
- Expected \# of probes (for large table sizes)
 - successful search:
 \[
 \frac{1}{2} \left(1 + \frac{1}{(1-\lambda)} \right)
 \]
 - unsuccessful search:
 \[
 \frac{1}{2} \left(1 + \frac{1}{(1-\lambda)^2} \right)
 \]
- Linear probing suffers from primary clustering
- Performance quickly degrades for \(\lambda > 1/2 \)

Quadratic Probing

\[f(i) = i^2 \]

- Probe sequence:
 0th probe = \(h(k) \mod \text{TableSize} \)
 1st probe = \((h(k) + 1) \mod \text{TableSize} \)
 2nd probe = \((h(k) + 4) \mod \text{TableSize} \)
 3rd probe = \((h(k) + 9) \mod \text{TableSize} \)
 \ldots
 \(ith \) probe = \((h(k) + i^2) \mod \text{TableSize} \)

Load Factor in Linear Probing

- For any \(\lambda < 1 \), linear probing will find an empty slot
- Expected \# of probes (for large table sizes)
 - successful search:
 \[
 \frac{1}{2} \left(1 + \frac{1}{(1-\lambda)} \right)
 \]
 - unsuccessful search:
 \[
 \frac{1}{2} \left(1 + \frac{1}{(1-\lambda)^2} \right)
 \]
- Linear probing suffers from primary clustering
- Performance quickly degrades for \(\lambda > 1/2 \)
Quadratic Probing Example

- \(\text{insert}(76) \)
 - \(76 \mod 7 = 6 \)
- \(\text{insert}(40) \)
 - \(40 \mod 7 = 5 \)
- \(\text{insert}(48) \)
 - \(48 \mod 7 = 6 \)
- \(\text{insert}(5) \)
 - \(5 \mod 7 = 5 \)
- \(\text{insert}(55) \)
 - \(55 \mod 7 = 6 \)
- \(\text{insert}(47) \)
 - \(47 \mod 7 = 5 \)

But… \(\text{insert}(47) \) \(47 \mod 7 = 5 \)

Quadratic Probing:

Success guarantee for \(\lambda < 1/2 \)

- If size is prime and \(\lambda < 1/2 \), then quadratic probing will find an empty slot in size/2 probes or fewer.
 - show for all \(0 \leq i, j \leq \text{size}/2 \) and \(i \neq j \):
 - \((h(x) + i^2) \mod \text{size} \neq (h(x) + j^2) \mod \text{size} \)
 - by contradiction: suppose that for some \(i \neq j \):
 - \((h(x) + i^2) \mod \text{size} = (h(x) + j^2) \mod \text{size} \)
 - \(i^2 \mod \text{size} = j^2 \mod \text{size} \)
 - \((i^2 - j^2) \mod \text{size} = 0 \)
 - \([i + j] [i - j] \mod \text{size} = 0 \)
 - BUT size does not divide \(i-j \) or \(i+j \)

Quadratic Probing: Properties

- For any \(\lambda < 1/2 \), quadratic probing will find an empty slot; for bigger \(\lambda \), quadratic probing may find a slot

- Quadratic probing does not suffer from primary clustering: keys hashing to the same area are not bad

- But what about keys that hash to the same spot?
 - Secondary Clustering!

Double Hashing

\[f(i) = i \ast g(k) \]

where \(g \) is a second hash function

- Probe sequence:
 - 0th probe = \(h(k) \mod \text{TableSize} \)
 - 1st probe = \((h(k) + g(k)) \mod \text{TableSize} \)
 - 2nd probe = \((h(k) + 2 \ast g(k)) \mod \text{TableSize} \)
 - 3rd probe = \((h(k) + 3 \ast g(k)) \mod \text{TableSize} \)
 - ...
 - \(i \)th probe = \((h(k) + i \ast g(k)) \mod \text{TableSize} \)

Resolving Collisions with Double Hashing

<table>
<thead>
<tr>
<th>Hash Functions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H(K) = K \mod M)</td>
</tr>
<tr>
<td>(H_2(K) = 1 + ((K/M) \mod (M-1)))</td>
</tr>
</tbody>
</table>

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

- 13
- 28
- 33
- 147
- 43

Double Hashing Example

- \(h(k) = k \mod 7 \) and \(g(k) = 5 - (k \mod 5) \)

<table>
<thead>
<tr>
<th>76</th>
<th>93</th>
<th>40</th>
<th>47</th>
<th>10</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>40</td>
<td>40</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>2</td>
<td>93</td>
<td>93</td>
<td>93</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>76</td>
<td>76</td>
<td>76</td>
<td>76</td>
<td>76</td>
</tr>
</tbody>
</table>

Probes 1: 1 1 2 1 1 2
Rehashing

Idea: When the table gets too full, create a bigger table (usually 2x as large) and hash all the items from the original table into the new table.

- When to rehash?
 - half full ($\lambda = 0.5$)
 - when an insertion fails
 - some other threshold
- Cost of rehashing?

Hashing Summary

- Hashing is one of the most important data structures.
- Hashing has many applications where operations are limited to find, insert, and delete.
- Dynamic hash tables have good amortized complexity.