Disjoint Sets and Dynamic
Equivalence Relations

CSE 373
Data Structures and Algorithms

Today’s Outline

* Announcements

— Assignment #4 due this Friday Feb"Eg the
beginning of lecture.

« Today’s Topics:
— Disjoint Sets & Dynamic Equivalence

2/08/09

Desired Properties

« None of the boundary is deleted
« Every cell is reachable from every other cell.

¢ Only one path from any one cell to another (There
are no cycles — no cell can reach itself by a path
unless it retraces some part of the path.)

2/08/09 15

Number the Cells

We have disjoint sets P ={ {1}, {2}, {3}, {4},... {36} } each cell is unto itself.
We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), ... } 60 edges total.

Basic Algorithm

* P=set of sets of connected cells
« E=setofedges
* Maze= set of maze edges (initially empty)
While there is more than one setin P {
pick a random edge (x,y) and remove from E

u := Find(x);
v := Find(y);
if u #vthen //removing edge (x,y) connects previously non-

/I connected cells x and y - leave this edge removed!

Union(u,v)
else Il cells x and y were already connected, add this

I edge to set of edges that will make up final maze.

add (x,y) to Maze

}
All remaining members of E together with Mazeform the maze

2/08/09 20

Start 1 2 3 4 5 6
7 18| 9|10|11]12
13 | 14 | 15 | 16 | 17 | 18
19 |20 | 21 | 22 | 23 | 24
25| 26|27 |28 29|30
3132(33|34|35|36 End
2/08/09 10
Example Step
Pick (8,14) p
{1,2,7,8,9,13,19}
{3}
Start 1 2 3 4 5 6 @
{5}
7 8 9 |10|11]12 6
{10}
13|14 |15 16 | 17 | 18 0
19 |20 | 21|22 23|24 {12}
— {14,20,26,27}
25|26 27 |28|29 30 {15,16,21}
31|32 33 34 35 36 End

2/08/09

{22,23,24,29,30,32
33,34,35,36} 21

Example
o P
e , {1,2,7,8,9,13,19,14,20 26,27}
{3 Find(8) = 7 &
4 Find(14) =20 5
) st @
) : ©
{10} Union(7,20) {EO}
tran 1117
{12} {12:}f
{14,20,26,27} 9o

{15,16,21}

{22,23,24,29,39,32
33,34,35,36}

{22,23,24,29,39,32
33,34,35,36}

Example

2/08/09 22

Pick (19,20) P
{1,2,7,8,9,13,19
14,20,26,27}
Start 1 2 ‘ 3| 4|56 {3}
- {4}
7 8 9]10|11]12 {5
13|14 |15 16 |17 | 18 {6}
{10}
19|20 | 21|22 23|24 {11,17}
{12}
25|26 27|28|29 30 {15,16,21}
31|32 33 34 35 36 End .
{22,23,24,29,39,32
2/08/09 33,34,35,36} 23

Example at the End

P
{1,23456,7,... 36}

Start 1 2|3 4 5 6

7 8 9 10 11|12 _ ,I\E,laze
13|14 |15 16 17|18
19|20 |21 22 2324
25 26 27 28|29 30
31|32 33 34 35 36 End
2/08/09 24

Implementing the Disjoint Sets ADT
cantherebe |
' more unions? |

,,,,,,,,,

* nelements
Total Cost ofmfinds, < n-1 unions

« Target complexityO(m+n)
i.e. O(1) amortized

* O(1) worst-case for find as well as union would be
great, but...
Known result: both find and uniorannot be done
in worst-caseé)(1) time

2/08/09 25

Up-Tree for Disjoint Union/Find

Initial state: @ @ @ @ @ @ @

After several @ @ @)
Unions: @_{
@
Roots are the names of each set. (@/

2/08/09 26

Find Operation

Find(x) - follow x to the root and return the root

@ ® @
o lds
Find(6) = 7 '®

2/08/09 27

Union Operation

Union(x,y)- assuming x and y are roots, point y to x.

2/08/09

Union(1,7)

28

Simple Implementation

¢ Array of indices

Up[x] = 0 means
X is a root.

12 3 45 617
w [o]1]o[7[7]5]0]

1A
é

2/08/09 29

Implementation

int Find(int x) {

void Union(int X, int y) {
while(up[x] 1= 0) { uply] = x;
X = upx]; }
}
return x; runtime for Union():

}

runtime for Find():

runtime for m Finds and n-1 Unions:

2/08/09

30

Now this doesn’t look goo®

Can we do better? Yes!

1. Improveunionso thatfind only takes®(log n)
¢ Union-by-size
* Reduces complexity t®(mlog n + n)

2. Improvefind so that it becomes even better!
e Path compression
¢ Reduces complexity to alma®{m + n)

2/08/09 32

A Bad Case
®@ @ ® - O
Union(2,1)
(5' Union(3,2)
(5® /.@ Union(n,n-1)

@ Find(1) n steps!!

2/08/09 6

33

Weighted Union

« Weighted Union

— Always point thesmaller (total # of nodes) tree to the
root of the larger tree

W-Union(1,7)

2/08/09 34

Example Again

®@ @ e - O
W-Union(2,1)
6' @ W-Union(3,2)
o .
W-Union(n,2)

6% Find(1) constant time

2/08/09 35

Analysis of Weighted Union

With weighted union an up-tree of height h has Wweig
least 2n.

« Proof by induction
— Basis h = 0. The up-tree has one nodes2
— Inductive stepr Assume true for all h’ < h.

T W(T) > W(T,) > 2"

Minimum weight T Welghfted Indﬁctlon
up-tree of height h hf union hypothesis
formed by W(T) 3 24 201 = n

weighted unions

2/08/09 36

Analysis of Weighted Union (cont)

Let T be an up-tree of weight n formed by weighted
union. Let h be its height.
n>2h
log, n>h

¢ Find(x) in tree T takes O(log n) time.
— Can we do better?

2/08/09 37

Worst Case for Weighted Union

n/2 Weighted Unions

88888838

n/4 Weighted Unions
@92 092 092 092

2/08/09 38

Example of Worst Case (cont’)

After n/2 + n/4 + ...+ 1 Weighted Unions:

If there are n = 2¥ nodes then the longest
path from leaf to root has length k.

2/08/09 39

Array Implementation

R
:

123456
up |-1/1-1/7|7|5
weight | 2 1

2/08/09 40

Weighted Union

W Union(i,j : index){
/li and j are roots new runtime for Union():
w = weight[i];

W = weight[j];

if Wi <w then

up[i] :=1j; new runtime for Find():
weight[j] (= wW + w;
el se

up[j] :=i;

weight[i] (= wi +wj;

runtime for mfinds and n-1 unions =

2/08/09 41

Nifty Storage Trick

« Use the same array representation as before

« Instead of storing1 for the root,
simply store-size

[Read section 8.4, page 299]

2/08/09 43

How about Union-by-heighit

¢ Can still guarantee O(lag worst case depth
Left as an exercise!

« Problem: Union-by-height doesn’t combine very weith
the new find optimization technique we’ll see next

2/08/09 44

Path Compression

* On a Find operation point all the nodes on theckepath
directly to the root.

% @A -

@
@/

2/08/09 45

[Student Actvty
Draw the result of Find(e):

2/08/09 47

Self-Adjustment Works

v

V| VVIVIN
_PC-Find(x) _ 1\ \

QALY
((((((((

x

2/08/09 48

Path Compression Find

PC-Find(i : index) {
ro=i;
while up[r] # -1 do //find root
roo=up[r];
Il Assert: r= the root, up[r] = -1
if i #r then /1 if i was not a root
temp := up[i];
while tenp # r do // compress path
up[i] :=r;
i = tenp;
temp := up[tenp]
return(r) (New?) runtime for Find:
2/08/09} 49

A More Comprehensible Slow Function

log* x = number of times you need to compute
log to bring value down to at most 1

E.g.log*2=1
log* 4 = log* 2= 2
log* 16 = log* 2°= 3 (log log log 16 = 1)
log* 65536 = log* 2= 4 (log log log log 65536 = 1)
log* 265536= ... =

Take this:a(m,n) grows even slower than logr !!

2/08/09 52

Disjoint Union / Find
with Weighted Union and PC

« Worst case time complexity for a W-Union is O(1)
and for a PC-Find is O(log n).

¢ Time complexity for n n operations on n
elements is O(m log* n) where log* n is a very
slow growing function.

— Log * n < 7 for all reasonable n. Essentially dang
time per operation!

2/08/09 54

Interlude: A Really Slow Function

Ackermann’s function is a reallybig function A, y) with
inversea(x, y) which is_reallysmall

How fast doesi(x, y) grow?

a(x,y) = 4 forxfar larger than the number of atoms in the
universe (29)

o shows up in:
— Computation Geometry (surface complexity)
— Combinatorics of sequences

2/08/09 51

Complex Complexity of
Union-by-Size + Path Compression

Tarjan proved that, with these optimizatiopsinion and find
operations on a set ofelements have worst case complexity of

O(p Co(p, n)

Forall practical purposesthis is amortized constant time:
O(p [4) for p operations!

* Very complex analysis

2/08/09 53

Amortized Complexity

« For disjoint union / find with weighted union and
path compression.
— average time per operation is essentially a cohsta
— worst case time for a PC-Find is O(log n).

¢ An individual operation can be costly, but over
time the average cost per operation is not.

2/08/09 55

