
1

Disjoint Sets and Dynamic
Equivalence Relations

CSE 373

Data Structures and Algorithms

2/06/09 2

Today’s Outline
• Announcements

– Assignment #4 coming soon.

• Today’s Topics:
– Priority Queues

• Skew Heaps & Amortized Runtime

– Disjoint Sets & Dynamic Equivalence

2/06/09 3

Motivation
Some kinds of data analysis require keeping track of

transitive relations.
Equivalence relations are one family of transitive

relations.
Grouping pixels of an image into colored regions is

one form of data analysis that uses “dynamic
equivalence relations”.

Creating mazes without cycles is another applic.
Later we’ll learn about “minimum spanning trees”

for networks, and how the dynamic equivalence
relations help out in computing spanning trees.

2/06/09 4

Disjoint Sets
• Two sets S1 and S2 are disjoint if and only if they

have no elements in common.

• S1 and S2 are disjoint iff S1 ∩ S2 = ∅

For example {a, b, c} and {d, e} are disjoint.

But {x, y, z} and {t, u, x} are not disjoint.

(the intersection of the two sets is the empty set)

2/06/09 5

Equivalence Relations
• A binary relation R on a set S is an equivalence

relationprovided it is reflexive, symmetric, and
transitive:

• Reflexive - R(a,a) for all a in S.
• Symmetric - R(a,b) → R(b,a)
• Transitive - R(a,b) ∧ R(b,c) → R(a,c)

Is ≤ an equivalence relation on integers?
Is “is connected by roads” an equivalence relation on

cities?

2/06/09 6

Induced Equivalence Relations
• Let S be a set, and let P be a partition of S.

P = { S1, S2, . . . , Sk }

P being a partition of S means that:
i ≠ j → Si ∩ Sj = ∅ and

S1 ∪ S2 ∪ . . . ∪ Sk = S

• P induces an equivalence relation R on S:

R(a,b) provided a and b are in the same subset(same
element of P).

So given any partition P of a set S, there is a corresponding
equivalence relation R on S.

2

2/06/09 7

Example
• S = {a, b, c, d, e}

P = { S1, S2, S3 }

S1 = {a, b, c}, S2 = {d}, S3 = {e}

P being a partition of S means that:
i ≠ j → Si ∩ Sj = ∅ and

S1 ∪ S2 ∪ . . . ∪ Sk = S

• P induces an equivalence relation R on S:

R = { (a,a), (b,b), (c,c), (a,b), (b,a), (a,c), (c,a),
(b,c), (c,b),

(d,d),

(e,e) }

2/06/09 8

Introducing the UNION-FIND ADT

• Also known as the Disjoint Sets ADT or the
Dynamic Equivalence ADT.

• There will be a set S of elements that does not
change.

• We will start with a partition P0, but we will
modify it over time by combining sets.

• The combining operation is called “UNION”

• Determining which set (of the current partition) an
element of S belongs to is called the “FIND”
operation.

2/06/09 9

Example
• Maintain a set of pairwise disjoint* sets.

– {3,5,7}, {4,2,8}, {9}, {1,6}

• Each set has a unique name: one of its members
– {3,5,7}, {4,2,8}, { 9}, { 1,6}

*Pairwise Disjoint: For any two sets you pick, their intersection
will be empty)

2/06/09 10

Union
• Union(x,y) – take the union of two sets named x

and y
– {3,5,7} , {4,2,8}, { 9}, { 1,6}

– Union(5,1)

{3,5,7,1,6}, {4,2,8}, { 9},

To perform the union operation, we replace sets x and y
by (x ∪ y)

2/06/09 11

Find
• Find(x) – return the name of the set containing x.

– {3,5,7,1,6}, {4,2,8}, { 9},

– Find(1) = 5

– Find(4) = 8

2/06/09 12

Application: Building Mazes
• Build a random maze by erasing edges.

3

2/06/09 13

Building Mazes (2)
• Pick Start and End

Start

End

2/06/09 14

Building Mazes (3)
• Repeatedly pick random edges to delete.

Start

End

2/06/09 15

Desired Properties
• None of the boundary is deleted

• Every cell is reachable from every other cell.

• Only one path from any one cell to another (There
are no cycles – no cell can reach itself by a path
unless it retraces some part of the path.)

2/06/09 16

A Cycle

Start

End

2/06/09 17

A Good Solution

Start

End

2/06/09 18

A Hidden Tree

Start

End

4

2/06/09 19

Number the Cells

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

We have disjoint sets P ={ {1}, {2}, {3}, {4},… {36} } each cell is unto itself.
We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), … } 60 edges total.

2/06/09 20

Basic Algorithm
• P = set of sets of connected cells
• E = set of edges
• Maze= set of maze edges (initially empty)

While there is more than one set in P {
pick a random edge (x,y) and remove from E
u := Find(x);
v := Find(y);
if u ≠ v then // removing edge (x,y) connects previously non-

// connected cells x and y - leave this edge removed!
Union(u,v)

else // cells x and y were already connected, add this
// edge to set of edges that will make up final maze.

add (x,y) to Maze
}
All remaining members of E together with Mazeform the maze

2/06/09 21

Example Step

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

P
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,30,32
33,34,35,36}

Pick (8,14)

2/06/09 22

Example
P
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Find(8) = 7
Find(14) = 20

P
{1,2,7,8,9,13,19,14,20 26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Union(7,20)

2/06/09 23

Example

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

P
{1,2,7,8,9,13,19

14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Pick (19,20)

2/06/09 24

Example at the End

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

P
{1,2,3,4,5,6,7,… 36}

E
Maze

