Today’s Outline

• Announcements
 – Assignment #3 due Thurs, Feb 5th.

• Today’s Topics:
 – Priority Queues
 • Leftist Heaps
 • Skew Heaps

Other Heap Operations

• insert ?
• deleteMin ?

Operations on Leftist Heaps

• merge with two trees of total size n: O(log n)
• insert with heap size n: O(log n)
 – pretend node is a size 1 leftist heap
 – insert by merging original heap with one node heap

• deleteMin with heap size n: O(log n)
 – remove and return root
 – merge left and right subtrees

Leftist Heaps: Summary

Good
•
•

Bad
•
•

Amortized Time

am-or-tized time:
Running time limit resulting from “writing off” expensive runs of an algorithm over multiple cheap runs of the algorithm, usually resulting in a lower overall running time than indicated by the worst possible case.

If M operations take total O(M log N) time, amortized time per operation is O(log N)

Difference from average time:
Skew Heaps
Problems with leftist heaps
– extra storage for npl
– extra complexity/logic to maintain and check npl
– right side is “often” heavy and requires a switch
Solution: skew heaps
– “blindly” adjusting version of leftist heaps
– merge always switches children when fixing right path
– amortized time for: merge, insert, deleteMin = O(log n)
– however, worst case time for all three = O(n)

Merging Two Skew Heaps

Example

Skew Heap Code
void merge(heap1, heap2) {
 case {
 heap1 == NULL: return heap2;
 heap2 == NULL: return heap1;
 heap1.findMin() < heap2.findMin():
 temp = heap1.right;
 heap1.right = heap1.left;
 heap1.left = merge(heap2, temp);
 return heap1;
 otherwise:
 return merge(heap2, heap1);
 }
}

Runtime Analysis:
Worst-case and Amortized
• No worst case guarantee on right path length!
• All operations rely on merge
 ⇒ worst case complexity of all ops =
• Amortized Analysis (Chapter 11)
• Result: M merges take time M log n
 ⇒ amortized complexity of all ops =

Comparing Priority Queues
• Binary Heaps
• Leftist Heaps
• d-Heaps
• Skew Heaps