Today’s Outline

• Announcements
 – Assignment #3 due Thurs, Feb 5th.

• Today’s Topics:
 – Priority Queues
 • Binary Min Heap - buildheap
 • D-Heaps
 • Leftist Heaps

Facts about Binary Min Heaps
Observations:
• finding a child/parent index is a multiply/divide by two
• operations jump widely through the heap
• each percolate step looks at only two new nodes
• inserts are at least as common as deleteMins

Realities:
• division/multiplication by powers of two are equally fast
• looking at only two new pieces of data: bad for cache!
• with huge data sets, disk accesses dominate

Representing Complete Binary Trees in an Array

Implicit (array) implementation:

A Solution: d-Heaps

• Each node has d children
• Still representable by array
• Good choices for d:
 – (choose a power of two for efficiency)
 – fit one set of children in a cache line
 – fit one set of children on a memory page/disk block
Operations on \(d\)-Heap

- Insert : runtime =
- deleteMin: runtime =

Priority Queues

(Leftist Heaps)

One More Operation

- Merge two heaps. Ideas?

New Operation: Merge

Given two heaps, merge them into one heap
- first attempt: insert each element of the smaller heap into the larger.
 \[\text{runtime}:\]
- second attempt: concatenate binary heaps’ arrays and run buildHeap.
 \[\text{runtime}:\]

Leftist Heaps

Idea:
Focus all heap maintenance work in one small part of the heap

Leftist heaps:
1. Most nodes are on the left
2. All the merging work is done on the right

Definition: Null Path Length

\(npl\) of a node \(x\) = the number of nodes between \(x\) and a null in its subtree

OR

\[npl(x) = \min \text{ distance to a descendant with 0 or 1 children}\]

- \(npl(\text{null}) = -1\)
- \(npl(\text{leaf, aka zero children}) = 0\)
- \(npl(\text{node with one child}) = 0\)

Equivalent definitions:
1. \(npl(x)\) is the height of largest perfect subtree rooted at \(x\)
2. \(npl(x) = 1 + \min\{npl(\text{left}(x)), npl(\text{right}(x))\}\)
Leftist Heap Properties

- Heap-order property
 - parent’s priority value is ≤ to childrens’ priority values
 - result: minimum element is at the root

- Leftist property
 - For every node \(x \), \(npl(left(x)) \geq npl(right(x)) \)
 - result: tree is at least as “heavy” on the left as the right

Are leftist trees…
- complete?
- balanced?

Right Path in a Leftist Tree is Short (#1)

Claim: The right path is as short as any in the tree.

Proof: (By contradiction)

Pick a shorter path: \(D_1 < D_2 \)

Say it diverges from right path at \(x \)

- \(npl(L) \leq D_1-1 \) because of the path of length \(D_1-1 \) to null
- \(npl(R) \geq D_2-1 \) because every node on right path is leftist

Leftist property at \(x \) violated!

Right Path in a Leftist Tree is Short (#2)

Claim: If the right path has \(r \) nodes, then the tree has at least \(2^{r-1} \) nodes.

Proof: (By induction)

- **Base case**: \(r=1 \) Tree has at least \(2^0 - 1 = 1 \) node
- **Inductive step**: assume true for \(r' < r \). Prove for tree with right path at least \(r \).
 1. Right subtree: right path of \(r-1 \) nodes
 \(\Rightarrow 2^{r-2} \) right subtree nodes (by induction)
 2. Left subtree: also right path of length at least \(r-1 \) (by previous slide)
 \(\Rightarrow 2^{r-2} \) left subtree nodes (by induction)

Total tree size: \(2^{r-1} + 2^{r-2} + 1 = 2^{r-1} \)

Why do we have the leftist property?

Because it guarantees that:
- the right path is really short compared to the number of nodes in the tree
- A leftist tree of \(N \) nodes, has a right path of at most \(\log (N+1) \) nodes

Idea – perform all work on the right path

Merge two heaps (basic idea)

- Put the smaller root as the new root,
- Hang its left subtree on the left,
- Recursively merge its right subtree and the other tree.
Merging Two Leftist Heaps

- \text{merge}(T_1, T_2)\) returns one leftist heap containing all elements of the two (distinct) leftist heaps \(T_1\) and \(T_2\)

Merge Example

Sewing Up the Example

Finally…
Other Heap Operations

• insert
• deleteMin

Operations on Leftist Heaps

• merge with two trees of total size n: O(log n)
• insert with heap size n: O(log n)
 – pretend node is a size 1 leftist heap
 – insert by merging original heap with one node heap

• deleteMin with heap size n: O(log n)
 – remove and return root
 – merge left and right subtrees

Leftist Heaps: Summary

Good
•
•

Bad
•
•