Today’s Outline

• Announcements
 – Assignment #1 due Thurs, Jan 15 at 11:45pm
 – Assignment #2 due Thurs, Jan 22, coming soon!
 – Midterm Dates:
 • Midterm #1: Friday, Jan 30th
 • Midterm #2: Friday, February 27th

• Today’s Topics:
 – Asymptotic Analysis
 – Binary Search Trees

Tree Calculations Example

How high is this tree?

More Recursive Tree Calculations: Tree Traversals

A traversal is an order for visiting all the nodes of a tree

Three types:
• Pre-order: Root, left subtree, right subtree
• In-order: Left subtree, root, right subtree
• Post-order: Left subtree, right subtree, root

Traversals

```c
void traverse(BNode t){
    if (t != NULL)
        traverse (t.left);
    print t.element;
    traverse (t.right);
}
```

Binary Trees

• Binary tree is
 – a root
 – left subtree (maybe empty)
 – right subtree (maybe empty)

• Representation:
Binary Tree: Representation

A
 left
right
B
 left
right
C
 left
right
D
 left
right
E
 left
right
F

Binary Tree: Special Cases

Complete Tree

A
 left
right
B
 left
right
D
 left
right
E

Perfect Tree

A
 left
right
B
 left
right
D
 left
right
E

Full Tree

A
 left
right
B
 left
right
D
 left
right
E

ADTs Seen So Far

• Stack
 – Push
 – Pop

• Queue
 – Enqueue
 – Dequeue

The Dictionary ADT

• Data:
 – a set of
 (key, value) pairs

• Operations:
 – Insert (key, value)
 – Find (key)
 – Remove (key)

The Dictionary ADT is sometimes called the "Map ADT"

Implementations

insert find delete

• Unsorted Linked-list
• Unsorted array
• Sorted array

A Modest Few Uses

• Sets
• Dictionaries
• Networks : Router tables
• Operating systems : Page tables
• Compilers : Symbol tables

Probably the most widely used ADT!
Binary Search Tree Data Structure

- **Structural property**
 - each node has ≤ 2 children
 - result:
 - storage is small
 - operations are simple
 - average depth is small

- **Order property**
 - all keys in left subtree smaller than root’s key
 - all keys in right subtree larger than root’s key
 - result: easy to find any given key

- What must I know about what I store?

Example and Counter-Example

Find in BST, Recursive

```java
Node find(Object key, Node root) {
    if (root == NULL)
        return NULL;
    if (key < root.key)
        return find(key, root.left);
    else if (key > root.key)
        return find(key, root.right);
    else
        return root;
}
```

Find in BST, Iterative

```java
Node find(Object key, Node root) {
    while (root != NULL && root.key != key) {
        if (key < root.key)
            root = root.left;
        else
            root = root.right;
    }
    return root;
}
```

Insert in BST

```
Insert(13)
Insert(8)
Insert(31)
```

Insertions happen only at the leaves – easy!

BuildTree for BST

- Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into an initially empty BST.
 - Runtime depends on the order!
 - in given order
 - in reverse order
 - median first, then left median, right median, etc.
Bonus: FindMin/FindMax

• Find minimum

• Find maximum

Deletion in BST

Why might deletion be harder than insertion?

Lazy Deletion

Instead of physically deleting nodes, just mark them as deleted

• simpler
• physical deletions done in batches
• some adds just flip deleted flag

– extra memory for deleted flag
– many lazy deletions slow finds
– some operations may have to be modified (e.g., min and max)

Non-lazy Deletion

• Removing an item disrupts the tree structure.
• Basic idea: find the node that is to be removed. Then “fix” the tree so that it is still a binary search tree.
• Three cases:
 – node has no children (leaf node)
 – node has one child
 – node has two children

Non-lazy Deletion – The Leaf Case

Delete(17)

Deletion – The One Child Case

Delete(15)
Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees!

Options:
- \textit{succ} from right subtree: \texttt{findMin(t.right)}
- \textit{pred} from left subtree : \texttt{findMax(t.left)}

Now delete the original node containing \textit{succ} or \textit{pred}
- Leaf or one child case – easy!

Finally…

Original node containing 7 gets deleted

Balanced BST

Observation
- BST: the shallower the better!
- For a BST with \(n \) nodes
 - Average height is \(\Theta(\log n) \)
 - Worst case height is \(\Theta(n) \)
- Simple cases such as insert(1, 2, 3, ..., \(n \)) lead to the worst case scenario

Solution: Require a Balance Condition that
1. ensures depth is \(\Theta(\log n) \) — strong enough!
2. is easy to maintain — not too strong!

Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes

2. Left and right subtrees of the root have equal \textit{height}

3. Left and right subtrees of every node have equal number of nodes

4. Left and right subtrees of every node have equal \textit{height}