
1

Binary Search Trees

CSE 373
Data Structures & Algorithms

Ruth Anderson
Winter 2009

1/14/09 2

Today’s Outline
• Announcements

– Assignment #1 due Thurs, Jan 15 at 11:45pm

– Assignment #2 due Thurs, Jan 22, coming soon!

– Midterm Dates:

• Midterm #1: Friday, Jan 30th

• Midterm #2: Friday, February 27th

• Today’s Topics:
– Asymptotic Analysis
– Binary Search Trees

1/14/09 3

Tree Calculations Example
A

E

B

D F

C

G

IH

KJ L

M

L

N

How high is this tree?

1/14/09 4

More Recursive Tree Calculations:
Tree Traversals

A traversalis an order for
visiting all the nodes of a tree

Three types:
• Pre-order: Root, left subtree, right subtree

• In-order: Left subtree, root, right subtree

• Post-order: Left subtree, right subtree, root

+

*

2 4

5

(an expression tree)

1/14/09 5

Traversals

void traverse(BNode t){

if (t != NULL)

traverse (t.left);

print t.element;

traverse (t.right);

}

}

1/14/09 6

Binary Trees
• Binary tree is

– a root
– left subtree(maybe empty)
– right subtree(maybe empty)

• Representation:

A

B

D E

C

F

HG

JI

Data

right
pointer

left
pointer

2

1/14/09 7

Binary Tree: Representation

A
right

pointer
left

pointer A

B

D E

C

F

B
right

pointer
left

pointer

C
right

pointer
left

pointer

D
right

pointer
left

pointer

E
right

pointer
left

pointer

F
right

pointer
left

pointer

1/14/09 8

Binary Tree: Special Cases

A

B

D E

C

GF

IH

A

B

D E

C

F

A

B

D E

C

GF

Full Tree

Complete Tree Perfect Tree

1/14/09 9

ADTs Seen So Far

• Stack
– Push

– Pop

• Queue
– Enqueue

– Dequeue

1/14/09 10

The Dictionary ADT

• Data:
– a set of

(key, value) pairs

• Operations:
– Insert (key, value)

– Find (key)

– Remove (key)

The Dictionary ADT is sometimes
called the “Map ADT”

• rea
Ruth Anderson
OH: M 3:30-4:30pm,

W 11am-12pm
CSE 360

• sysliu
Sean Liu
OH: T 1:30-2:30pm,
Th 1-2pm
CSE 216

• suporn
Suporn Pongnumkul
OH: M & Th, 11am-12pm
CSE 216

insert(rea, ….)

find(sysliu)

• sysliu
Sean Liu, …

1/14/09 11

A Modest Few Uses
• Sets

• Dictionaries

• Networks : Router tables

• Operating systems : Page tables

• Compilers : Symbol tables

Probably the most widely used ADT!

1/14/09 12

Implementations

• Unsorted Linked-list

• Unsorted array

• Sorted array

insert deletefind

3

1/14/09 13

Binary Search Tree Data Structure

4

121062

115

8

14

13

7 9

• Structural property
– each node has ≤ 2 children
– result:

• storage is small
• operations are simple
• average depth is small

• Order property
– all keys in left subtree smaller

than root’s key
– all keys in right subtree larger

than root’s key
– result: easy to find any given key

• What must I know about what I store?

1/14/09 14

Example and Counter-Example

3

1171

84

5

4

181062

115

8

20

21BINARY SEARCH TREE
NOT A

BINARY SEARCH TREE

7

15

1/14/09 15

Find in BST, Recursive
Node Find(Object key,

Node root) {

if (root == NULL)

return NULL;

if (key < root.key)

return Find(key,

root.left);

else if (key > root.key)

return Find(key,

root.right);

else

return root;

}

2092

155

10

307 17

Runtime:

1/14/09 16

Find in BST, Iterative
Node Find(Object key,

Node root) {

while (root != NULL &&

root.key != key) {

if (key < root.key)

root = root.left;

else

root = root.right;

}

return root;

}

2092

155

10

307 17

Runtime:

1/14/09 17

Insert in BST

2092

155

10

307 17

Runtime:

Insert(13)
Insert(8)
Insert(31)

Insertions happen only
at the leaves – easy!

1/14/09 18

BuildTree for BST
• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into an

initially empty BST.
Runtime depends on the order!

– in given order

– in reverse order

– median first, then left median, right median, etc.

4

1/14/09 19

Bonus: FindMin/FindMax

• Find minimum

• Find maximum
2092

155

10

307 17

1/14/09 20

Deletion in BST

2092

155

10

307 17

Why might deletion be harder than insertion?

1/14/09 21

Lazy Deletion

Instead of physically deleting nodes,
just mark them as deleted

+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag

– extra memory for deleted flag
– many lazy deletions slow finds
– some operations may have to be

modified (e.g., min and max)

2092

155

10

307 17

1/14/09 22

Non-lazy Deletion
• Removing an item disrupts the tree structure.

• Basic idea: find the node that is to be removed.
Then “fix” the tree so that it is still a binary search
tree.

• Three cases:
– node has no children (leaf node)

– node has one child

– node has two children

1/14/09 23

Non-lazy Deletion – The Leaf Case

2092

155

10

307 17

Delete(17)

1/14/09 24

Deletion – The One Child Case

2092

155

10

307

Delete(15)

5

1/14/09 25

Deletion – The Two Child Case

3092

205

10

7

Delete(5)

What can we replace 5 with?

1/14/09 26

Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be
between the two child subtrees!

Options:

• succfrom right subtree: findMin(t.right)

• predfrom left subtree : findMax(t.left)

Now delete the original node containing succor pred

• Leaf or one child case – easy!

1/14/09 27

Finally…

3092

207

10

7 replaces 5

Original node containing
7 gets deleted

1/14/09 28

Balanced BST
Observation
• BST: the shallower the better!
• For a BST with n nodes

– Average height is Θ(log n)
– Worst case height is Θ(n)

• Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

Solution: Require a Balance Conditionthat
1. ensures depth isΘ(log n) – strong enough!

2. is easy to maintain – not too strong!

1/14/09 29

Potential Balance Conditions
1. Left and right subtrees of the root

have equal number of nodes

2. Left and right subtrees of the root
have equal height

1/14/09 30

Potential Balance Conditions
3. Left and right subtrees of every node

have equal number of nodes

4. Left and right subtrees of every node
have equal height

