Today’s Outline

- Announcements
 - Assignment #1 due Thurs, Jan 15 at 11:45pm
 - Midterm Dates:
 - Midterm #1: Friday, Jan 30th
 - Midterm #2: Friday, February 27th
- Asymptotic Analysis

Linear Search vs Binary Search

<table>
<thead>
<tr>
<th></th>
<th>Linear Search</th>
<th>Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Case</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worst Case</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

So … which algorithm is better? What tradeoffs can you make?

Fast Computer vs. Slow Computer

Fast Computer vs. Smart Programmer (round 1)

Fast Computer vs. Smart Programmer (round 2)
Asymptotic Analysis

• Asymptotic analysis looks at the order of the running time of the algorithm
 – A valuable tool when the input gets “large”
 – Ignores the effects of different machines or different implementations of the same algorithm

• Intuitively, to find the asymptotic runtime, throw away the constants and low-order terms
 – Linear search is $T(n) = 3n + 2 \in \Theta(n)$
 – Binary search is $T(n) = 4 \log_2 n + 4 \in \Theta(\log n)$

Remember: the fastest algorithm has the slowest growing function for its runtime

Order Notation: Intuition

Although not yet apparent, as n gets “sufficiently large”, $f(n)$ will be “greater than or equal to” $g(n)$

Order Notation: Definition

$O(f(n))$: a set or class of functions

$g(n) \in O(f(n))$ iff there exist constants c and n_0 such that:

$g(n) \leq c f(n)$ for all $n \geq n_0$

Example: $g(n) = 1000n$ vs. $f(n) = n^2$

Is $g(n) \in O(f(n))$?

Pick: $n_0 = 1000, c = 1$

Definition of Order Notation

• Upper bound: $T(n) = O(f(n))$ Big-O
 Exist constants c and n_0 such that
 $T(n) \leq c f(n)$ for all $n \geq n_0$

• Lower bound: $T(n) = \Omega(g(n))$ Omega
 Exist constants c and n_0 such that
 $T(n) \geq c g(n)$ for all $n \geq n_0$

• Tight bound: $T(n) = \Theta(f(n))$ Theta
 When both hold:
 $T(n) = O(f(n))$
 $T(n) = \Omega(f(n))$

Notation Notes

Note: Sometimes, you’ll see the notation:

$g(n) = O(f(n))$.

This is equivalent to:

$g(n)$ is $O(f(n))$.

However: The notation

$O(f(n)) = g(n)$

is meaningless!

(in other words big-O “equality” is not symmetric)
Order Notation: Example

\[100n^2 + 1000 \leq \frac{n^3}{2} + 1000 \text{ for all } n \geq 19 \]

So \(f(n) \) is \(O(g(n)) \)

Big-O: Common Names

- constant: \(O(1) \)
- logarithmic: \(O(\log n) \) \((\log n, \log n^2 \text{ is } O(\log n))\)
- log squared \(O(\log^2 n) \)
- linear: \(O(n) \)
- log-linear: \(O(n \log n) \)
- quadratic: \(O(n^2) \)
- cubic: \(O(n^3) \)
- polynomial: \(O(n^k) \) \((k \text{ is a constant})\)
- exponential: \(O(c^n) \) \((c \text{ is a constant } > 1)\)

Meet the Family

- \(O(f(n)) \) is the set of all functions asymptotically less than or equal to \(f(n) \)
 - \(o(f(n)) \) is the set of all functions asymptotically strictly less than \(f(n) \)
- \(\Omega(f(n)) \) is the set of all functions asymptotically greater than or equal to \(f(n) \)
 - \(\omega(f(n)) \) is the set of all functions asymptotically strictly greater than \(f(n) \)
- \(\Theta(f(n)) \) is the set of all functions asymptotically equal to \(f(n) \)

Meet the Family, Formally

- \(g(n) \in O(f(n)) \) iff
 There exist \(c \) and \(n_0 \) such that \(g(n) \leq c f(n) \) for all \(n \geq n_0 \)
 - \(g(n) \in o(f(n)) \) iff
 There exists a \(n_0 \) such that \(g(n) < c f(n) \) for all \(c \) and \(n \geq n_0 \)
 Equivalent to: \(\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0 \)
- \(g(n) \in \Omega(f(n)) \) iff
 There exist \(c > 0 \) and \(n_0 \) such that \(g(n) \geq c f(n) \) for all \(n \geq n_0 \)
 - \(g(n) \in \omega(f(n)) \) iff
 There exists a \(n_0 \) such that \(g(n) > c f(n) \) for all \(c \) and \(n \geq n_0 \)
 Equivalent to: \(\lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty \)
- \(g(n) \in \Theta(f(n)) \) iff
 \(g(n) \in O(f(n)) \) and \(g(n) \in \Omega(f(n)) \)

Big-Omega et al. Intuitively

<table>
<thead>
<tr>
<th>Asymptotic Notation</th>
<th>Mathematics Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O)</td>
<td>(\leq)</td>
</tr>
<tr>
<td>(\Omega)</td>
<td>(\geq)</td>
</tr>
<tr>
<td>(\Theta)</td>
<td>(=)</td>
</tr>
<tr>
<td>(o)</td>
<td>(<)</td>
</tr>
<tr>
<td>(\omega)</td>
<td>(>)</td>
</tr>
</tbody>
</table>

Pros and Cons of Asymptotic Analysis
Types of Analysis

Two orthogonal axes:

- **bound flavor**
 - upper bound \(\Theta \)
 - lower bound \(\Omega \)
 - asymptotically tight \(\Theta \)

- **analysis case**
 - worst case (adversary)
 - average case
 - best case
 - "amortized"

Algorithm Analysis Examples

- Consider the following program segment:
  ```
  x := 0;
  for i = 1 to N do
    for j = 1 to i do
      x := x + 1;
  ```

 What is the value of \(x \) at the end?

Arithmetic Sequences

\(\mathbb{N} = \{0, 1, 2, \ldots \} \) = natural numbers

\(\{0, 1, 2, \ldots \} \) is an infinite arithmetic sequence

\(\{a, a+d, a+2d, a+3d, \ldots \} \) is a general infinite arithmetic sequence.

There is a **constant difference** between terms.

\[
1 + 2 + 3 + \ldots + N = \sum_{i=1}^{N} i = \frac{N(N+1)}{2}
\]

Analyzing the Loop

- Total number of times \(x \) is incremented is executed =

\[
1 + 2 + 3 + \ldots + N = \sum_{i=1}^{N} i = \frac{N(N+1)}{2}
\]

- Congratulations - You’ve just analyzed your first program!
 - Running time of the program is proportional to \(\frac{N(N+1)}{2} \) for all \(N \)
 - Big-O ??

Which Function Grows Faster?

\(n^3 + 2n^2 \) vs. \(100n^2 + 1000 \)
Which Function Grows Faster?

$n^{0.1}$ vs. $\log n$

Which Function Grows Faster?

$5n^5$ vs. $n!$

Nested Loops

for $i = 1$ to n
do
 for $j = 1$ to n
do
 sum = sum + 1
 for $i = 1$ to n
do
 for $j = 1$ to n
do
 if (cond) {
 do_stuff(sum)
 } else {
 for $k = 1$ to $n*n$
do
 sum += 1
$16n^3 \log_8 (10n^2) + 100n^2 = O(n^3 \log(n))$

- Eliminate low order terms
- Eliminate constant coefficients

$16n^3 \log_8 (10n^2) + 100n^2 = O(n^3 \log(n))$

- Eliminate low order terms
- Eliminate constant coefficients

$16n^3 \log_8 (10n^2) + 100n^2$

$\Rightarrow 16n^3 \log_8 (10n^2)$

$\Rightarrow n^3 \log_8 (10n^2)$

$\Rightarrow n^3 \left[\log_8 (10) + \log_8 (n^2) \right]$}

$\Rightarrow n^3 \log_8 (10) + n^3 \log_8 (n^2)$

$\Rightarrow n^3 \log_8 (n^2)$

$\Rightarrow n^2 \log_8 (n)$

$\Rightarrow n^3 \log_8 (n)$

$\Rightarrow n^3 \log_8 (2) \log(n)$

$\Rightarrow n^3 \log(n)$