Today’s Outline

• Announcements
 – HW #5
 • Assignment due Thurs June 4th.
• Sorting

Why Sort?

Sorting: The Big Picture

Problem: Given n comparable elements in an array, sort them in an increasing (or decreasing) order.

<table>
<thead>
<tr>
<th>Simple algorithms: $O(n^2)$</th>
<th>Fancier algorithms: $O(n \log n)$</th>
<th>Comparison lower bound: $\Omega(n \log n)$</th>
<th>Specialized algorithms: $O(n)$</th>
<th>Handling huge data sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion sort</td>
<td>Heap sort</td>
<td>Bucket sort</td>
<td>External sorting</td>
<td></td>
</tr>
<tr>
<td>Selection sort</td>
<td>Merge sort</td>
<td>Radix sort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bubble sort</td>
<td>Quick sort</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shell sort</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Insertion Sort: Idea

• At the k^{th} step, put the k^{th} input element in the correct place among the first k elements
• Result: After the k^{th} step, the first k elements are sorted.

Runtime:
 - worst case :
 - best case :
 - average case :

Selection Sort: Idea

• Find the smallest element, put it 1st
• Find the next smallest element, put it 2nd
• Find the next smallest, put it 3rd
• And so on …
Mystery(int array a[]) {
 for (int p = 1; p < length; p++) {
 int tmp = a[p];
 for (int j = p; j > 0 && tmp < a[j-1]; j--)
 a[j] = a[j-1];
 a[j] = tmp;
 }
}

Selection Sort: Code

void SelectionSort (Array a[0..n-1]) {
 for (i=0, i<n; ++i) {
 j = Find index of smallest entry in a[i..n-1]
 Swap(a[i],a[j])
 }
}

Runtime:
 worst case :
 best case :
 average case :

Sorts using other data structures:

AVL Sort?

Heap Sort?

Splay Sort?

HeapSort:
Using Priority Queue ADT (heap)

Shove all elements into a priority queue, take them out smallest to largest.

Runtime:

AVL Sort

Merge Sort?

Would the simpler “Splay sort” take any longer than this?
Merge Sort

1. Split Array in half
2. Recursively sort each half
3. Merge two halves together

\[
\text{MergeSort} \ (\text{Array} \ [1..n])
\]

Merge \((a_1[1..n], a_2[1..n]) \)

- \(i_1, i_2 = 1 \)
- \(\text{While } (i_1 < n, i_2 < n) \) \[
\text{if } a_1[i_1] < a_2[i_2] \text{ } \text{Next is } a_1[i_1] \text{ } i_1++
\]
- \(\text{else } \text{Next is } a_2[i_2] \text{ } i_2++
\]
- \(\text{Now throw in the dregs...} \)

"The 2-pointer method"

Quick Sort

1. Pick a "pivot"
2. Divide into less-than & greater-than pivot
3. Sort each side recursively

\[
\text{QuickSort} \ (\text{Array} \ [1..n])
\]

- Choose the pivot as the median of three.
- Place the pivot and the largest at the right and the smallest at the left.
QuickSort Example

Recursive Quicksort

Quicksort(A[]): integer array, left, right : integer): {
 pivotindex : integer;
 if left + CUTOFF ≤ right then
 pivot := median3(A, left, right);
 pivotindex := Partition(A, left, right-1, pivot);
 Quicksort(A, left, pivotindex – 1);
 Quicksort(A, pivotindex + 1, right);
 else
 Insertionsort(A, left, right);
}

Don’t use quicksort for small arrays.
CUTOFF = 10 is reasonable.

Recurrence Relations

Write the recurrence relation for QuickSort:

• Best Case:
• Worst Case:

QuickSort: Worst case complexity

QuickSort: Average case complexity

Turns out to be $O(n \log n)$

See Section 7.7.5 for an idea of the proof.
Don’t need to know proof details for this course.
Features of Sorting Algorithms

- **In-place**
 - Sorted items occupy the same space as the original items. (No copying required, only $O(1)$ extra space if any.)
- **Stable**
 - Items in input with the same value end up in the same order as when they began.

Sort Properties

<table>
<thead>
<tr>
<th>Are the following:</th>
<th>stable?</th>
<th>in-place?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Sort?</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Selection Sort?</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Heap Sort?</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>MergeSort?</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>QuickSort?</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

How fast can we sort?

- Heapsort, Mergesort, and Quicksort all run in $O(N \log N)$ best case running time
- Can we do any better?
- No, if the basic action is a comparison.

Sorting Model

- Recall our basic assumption: we can only compare two elements at a time
 - we can only reduce the possible solution space by half each time we make a comparison
- Suppose you are given N elements
 - Assume no duplicates
- How many possible orderings can you get?
 - Example: $a, b, c \ (N = 3)$

Permutations

- How many possible orderings can you get?
 - Example: $a, b, c \ (N = 3)$
 - $(a \ b \ c), (a \ c \ b), (b \ a \ c), (b \ c \ a), (c \ a \ b), (c \ b \ a)$
 - 6 orderings = $3 \cdot 2 \cdot 1 = 3!$ (i.e., "3 factorial")
 - All the possible permutations of a set of 3 elements
- For N elements
 - N choices for the first position, $(N-1)$ choices for the second position, …, (2) choices, 1 choice
 - $N(N-1)(N-2)\cdots(2)(1) = N!$ possible orderings

Decision Tree

The leaves contain all the possible orderings of a, b, c.
Lower bound on Height

- A binary tree of height h has at most _ leaves.

L _

- A binary tree with L leaves has height at least _.

h _

- The decision tree has how many leaves: _.

- So the decision tree has height: _.

$log(N!)$ is $\Omega(N \log N)$

$log(N!) = log(N \cdot (N-1) \cdot (N-2) \cdot \ldots \cdot 1)$

$\geq N + log(N-1) + log(N-2) + \ldots + N \log \frac{N}{2}$

$\geq \frac{N}{2} \log \frac{N}{2}$

$\geq \frac{N}{2} (\log N - \log 2) = \frac{N}{2} \log N - \frac{N}{2}$

$\Omega(N \log N)$

$\Omega(N \log N)$

- Run time of any comparison-based sorting algorithm is $\Omega(N \log N)$

- Can we do better if we don’t use comparisons?

BucketSort (aka BinSort, CountingSort)

If all values to be sorted are known to be between 1 and K, create an array $count$ of size K, increment counts while traversing the input, and finally output the result.

Example $K=5$. Input = (5,1,3,4,3,2,1,1,5,4,5)

BucketSort Complexity: $O(n+K)$

- Case 1: K is a constant
 - BinSort is linear time
- Case 2: K is variable
 - Not simply linear time
- Case 3: K is constant but large (e.g. 2^{32})
 - ???

Fixing impracticality: RadixSort

- Radix = “The base of a number system”
 - We’ll use 10 for convenience, but could be anything

- Idea: BucketSort on each digit
 - least significant to most significant (lsd to msd)
Radix Sort Example (1st pass)

Input data

<table>
<thead>
<tr>
<th></th>
<th>Input data</th>
<th>Bucket sort by 1's digit</th>
<th>After 1st pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>478</td>
<td>537</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>721</td>
<td>123</td>
<td>123</td>
</tr>
<tr>
<td>3</td>
<td>38</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>123</td>
<td>67</td>
<td>478</td>
<td>478</td>
</tr>
<tr>
<td>67</td>
<td>38</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

This example uses B=10 and base 10 digits for simplicity of demonstration. Larger bucket counts should be used in an actual implementation.

Radix Sort Example (2nd pass)

<table>
<thead>
<tr>
<th></th>
<th>After 1st pass</th>
<th>Bucket sort by 10's digit</th>
<th>After 2nd pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
<td>3</td>
<td>123</td>
<td>123</td>
</tr>
<tr>
<td>3</td>
<td>123</td>
<td>537</td>
<td>537</td>
</tr>
<tr>
<td>67</td>
<td>67</td>
<td>478</td>
<td>478</td>
</tr>
<tr>
<td>38</td>
<td>38</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Radix Sort Example (3rd pass)

<table>
<thead>
<tr>
<th></th>
<th>After 2nd pass</th>
<th>Bucket sort by 100's digit</th>
<th>After 3rd pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>721</td>
<td>721</td>
<td>123</td>
<td>123</td>
</tr>
<tr>
<td>123</td>
<td>123</td>
<td>537</td>
<td>537</td>
</tr>
<tr>
<td>38</td>
<td>38</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>67</td>
<td>67</td>
<td>478</td>
<td>478</td>
</tr>
<tr>
<td>478</td>
<td>478</td>
<td>721</td>
<td>721</td>
</tr>
</tbody>
</table>

Invariant: after k passes the low order k digits are sorted.

Radix Sort: Complexity

- How many passes?
- How much work per pass?
- Total time?
- Conclusion?
- In practice
 - RadixSort only good for large number of elements with relatively small values. Why?
 - Hard on the cache compared to MergeSort/QuickSort

Internal versus External Sorting

- Need sorting algorithms that minimize disk/tape access time
- **External sorting** – Basic Idea:
 - Load chunk of data into RAM, sort, store this “run” on disk/tape
 - Use the Merge routine from Mergesort to merge runs
 - Repeat until you have only one run (one sorted chunk)
 - Text gives some examples in section 7.10