B-Trees
(4.7 in Weiss)

CSE 373
Data Structures & Algorithms
Ruth Anderson

Trees so far

- BST
- AVL

M-ary Search Tree

- Maximum branching factor of M
- Complete tree has height =

disk accesses for find:

Runtime of find:

Solution: B-Trees

- specialized M-ary search trees

- Each node has (up to) M-1 keys:
 - subtree between two keys x and y contains
 leaves with values v such that
 x ≤ v < y

- Pick branching factor M
 such that each node
 takes one full
 (page, block)
 of memory

What makes them disk-friendly?

1. Many keys stored in a node
 - All brought to memory/cache in one access!

2. Internal nodes contain only keys;
 Only leaf nodes contain keys and actual data
 - The tree structure can be loaded into memory
 irrespective of data object size
 - Data actually resides in disk
B-Tree: Example

B-Tree with $M = 4$ (# pointers in internal node) and $L = 4$ (# data items in leaf)

Note: All leaves at the same depth!

Data objects, that I'll ignore in slides

B-Tree Properties

- Data is stored at the leaves
- All leaves are at the same depth and contain between $\lceil L/2 \rceil$ and L data items
- Internal nodes store up to $M-1$ keys
- Internal nodes have between $\lceil M/2 \rceil$ and M children
- Root (special case) has between 2 and M children (or root could be a leaf)

†These are technically B*-Trees

Example, Again

B-Tree with $M = 4$ and $L = 4$

(Note showing keys, but leaves also have data!)

B-trees vs. AVL trees

Suppose we have 100 million items (100,000,000):

- Depth of AVL Tree
- Depth of B+ Tree with $M = 128$, $L = 64$

Building a B-Tree

The empty B-Tree $M = 3$, $L = 2$

Insert(3) → Insert(14) → Insert(1)

Now, Insert(1)?

Splitting the Root

$M = 3$, $L = 2$

Too many keys in a leaf!

Insert(1)

And create a new root

So, split the leaf.
Overflowing leaves

Insert(59)

Too many keys in a leaf!

So, split the leaf.

Insert(26)

And add a new child.

Insertion Algorithm

1. Insert the key in its leaf
2. If the leaf ends up with \(L+1\) items, overflow!
 - Split the leaf into two nodes:
 * original with \(\lceil (L+1)/2 \rceil\) items
 * new one with \(\lfloor (L+1)/2 \rfloor\) items
 - Add the new child to the parent
 - If the parent ends up with \(M+1\) items, overflow!
3. If an internal node ends up with \(M+1\) items, overflow!
 - Split the node into two nodes:
 * original with \(\lceil (M+1)/2 \rceil\) items
 * new one with \(\lfloor (M+1)/2 \rfloor\) items
 - Add the new child to the parent
 - If the parent ends up with \(M+1\) items, overflow!
4. Split an overflowed root in two and hang the new nodes under a new root

This makes the tree deeper!

Propagating Splits

Insert(5)

Add new child

Split the leaf, but no space in parent!

Create a new root

So, split the node.

Deletion

1. Delete item from leaf
2. Update keys of ancestors if necessary

What could go wrong?

Deletion and Adoption

Delete(59)

A leaf has too few keys!

So, borrow from a sibling

M = 3, L = 2

After More Routine Inserts

Insert(89)

Insert(79)

Deletion and Adoption

Delete(5)

Delete(5)

M = 3, L = 2
Does Adoption Always Work?

- What if the sibling doesn’t have enough for you to borrow from?

 e.g. you have \(\lceil L/2 \rceil - 1 \) and sibling has \(\lceil L/2 \rceil \)?

Deletion and Merging

- A leaf has too few keys!

 And no sibling with surplus!

- But now an internal node has too few subtrees!

- So, delete the leaf

Deletion with Propagation (More Adoption)

- Adopt a neighbor

A Bit More Adoption

- Delete(1) (adopt a sibling)

Pulling out the Root

- A leaf has too few keys!

 And no sibling with surplus!

- But now the root has just one subtree!

- Simply make the one child the new root!

Pulling out the Root (continued)

- The root has just one subtree!

- Simply make the one child the new root!
Deletion Algorithm

1. Remove the key from its leaf

2. If the leaf ends up with fewer than \(\lceil L/2 \rceil \) items, **underflow**!
 - Adopt data from a sibling; update the parent
 - If adopting won’t work, delete node and merge with neighbor
 - If the parent ends up with fewer than \(\lceil M/2 \rceil \) items, **underflow**!

Deletion Slide Two

3. If an internal node ends up with fewer than \(\lceil M/2 \rceil \) items, **underflow**!
 - Adopt from a neighbor; update the parent
 - If adoption won’t work, merge with neighbor
 - If the parent ends up with fewer than \(\lceil M/2 \rceil \) items, **underflow**!

4. If the root ends up with only one child, make the child the new root of the tree

Thinking about B-Trees

- B-Tree insertion can cause (expensive) splitting and propagation
- B-Tree deletion can cause (cheap) adoption or (expensive) deletion, merging and propagation
- Propagation is rare if \(M \) and \(L \) are large *(Why?)*
- If \(M = L = 128 \), then a B-Tree of height 4 will store at least 30,000,000 items

Tree Names You Might Encounter

FYI:
- B-Trees with \(M = 3, L = x \) are called 2-3 trees
 - Nodes can have 2 or 3 pointers
- B-Trees with \(M = 4, L = x \) are called 2-3-4 trees
 - Nodes can have 2, 3, or 4 pointers