Graphs: More on Shortest Paths, Plus Minimum Spanning Trees

CSE 373
Data Structures and Algorithms

Today’s Outline

• Announcements
 – Homework #5 – due Thurs June 4

• Graphs
 – Shortest Paths Algorithms
 – Minimum Spanning Tree

Correctness: The Cloud Proof

How does Dijkstra’s decide which vertex to add to the Known set next?
• If path to V is shortest, path to W must be at least as long
 (or else we would have picked W as the next vertex)
• So the path through W to V cannot be any shorter!

Correctness: Inside the Cloud

Prove by induction on # of nodes in the cloud:
 Initial cloud is just the source with shortest path 0
 Assume: Everything inside the cloud has the correct shortest path
 Inductive step: Only when we prove the shortest path to some node v (which is not in the cloud) is correct, we add it to the cloud

When does Dijkstra’s algorithm not work?

Dijkstra’s vs BFS

At each step:
1) Pick closest unknown vertex
2) Add it to finished vertices
3) Update distances

Breadth-first Search

Dijkstra’s Algorithm

Some Similarities:

The Trouble with Negative Weight Cycles

A 2 B
C 2 D
E

What’s the shortest path from A to E?

Problem?
Minimum Spanning Trees
Given an undirected graph \(G = (V, E) \), find a graph \(G' = (V', E') \) such that:
- \(E' \) is a subset of \(E \)
- \(|E'| = |V| - 1 \)
- \(G' \) is connected
- \(G' \) is minimal
\[
\sum_{(u, v) \in E'} c_{uv}
\]
Applications: wiring a house, power grids, Internet connections

Find the MST

Two Different Approaches
Prim’s Algorithm
Almost identical to Dijkstra’s
Kruskal’s Algorithm
Completely different!

Prim’s Algorithm for MST
A node-based greedy algorithm
Builds MST by greedily adding nodes
1. Select a node to be the “root”
 - mark it as known
 - update cost of all its neighbors
2. While there are unknown nodes left in the graph
 a. Select an unknown node \(b \) with the smallest cost from some known node \(a \)
 b. Mark \(b \) as known
 c. Add \((a, b)\) to MST
 d. Update cost of all nodes adjacent to \(b \)

Find MST using Prim’s

<table>
<thead>
<tr>
<th>V</th>
<th>Kwn</th>
<th>Distance</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OrderDeclaredKnown: \(V_1 \)
Prim’s Algorithm Analysis

Running time:
- Same as Dijkstra’s: $O(|E| \log |V|)$

Correctness:
- Proof is similar to Dijkstra’s

Kruskal’s Algorithm for MST

An edge-based greedy algorithm
- Builds MST by greedily adding edges

1. Initialize with
 - empty MST
 - all vertices marked unconnected
 - all edges unmarked
2. While there are still unmarked edges
 a. Pick the lowest cost edge (u, v) and mark it
 b. If u and v are not already connected, add (u, v) to the MST and mark u and v as connected to each other

Doesn’t it sound familiar?

Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

$G=(V,E)$

Kruskal code

```cpp
void Graph::kruskal(){
    int edgesAccepted = 0;
    DisjSet s(NUM_VERTICES);
    while (edgesAccepted < NUM_VERTICES - 1){
        e = smallest weight edge not deleted yet;
        // edge e = (u, v)
        uset = s.find(u);
        vset = s.find(v);
        if (uset != vset){
            edgesAccepted++;
            s.unionSets(uset, vset);
        }
    }
}
```

2|E| finds $|V|$ unions $|E|$ heap ops

Find MST using Kruskal’s

- Now find the MST using Prim’s method.
- Under what conditions will these methods give the same result?