Graphs: Definitions and Representations

CSE 373
Data Structures and Algorithms

Today’s Outline

• Announcements
 – On Friday we will meet in EXEC 110
 – HW #4 due at the beginning of class Friday
 – Midterm #2 – Wed May 20

• Graphs
 – Representations
 – Topological Sort

Graph… ADT?

• Not quite an ADT…
 operations not clear

• A formalism for representing relationships between objects
 Graph $G = (V, E)$
 – Set of vertices:
 $V = \{v_1, v_2, \ldots, v_n\}$
 – Set of edges:
 $E = \{e_1, e_2, \ldots, e_m\}$
 where each e_i connects two vertices (v_{i1}, v_{i2})

Graph Definitions

In directed graphs, edges have a specific direction:

In undirected graphs, they don’t (edges are two-way):

v is adjacent to u if $(u, v) \in E$

More Definitions:
Simple Paths and Cycles

A simple path repeats no vertices (except that the first can be the last):

A cycle is a path that starts and ends at the same node:

A simple cycle is a cycle that repeats no vertices except that the first vertex is also the last (in undirected graphs, no edge can be repeated)
Trees as Graphs

- Every tree is a graph!
- Not all graphs are trees!

A graph is a tree if
- There are no cycles (directed or undirected)
- There is a path from the root to every node

Directed Acyclic Graphs (DAGs)

DAGs are directed graphs with no (directed) cycles.

Aside: If program call-graph is a DAG, then all procedure calls can be in-lined

Graph Connectivity

Undirected graphs are connected if there is a path between any two vertices

Directed graphs are strongly connected if there is a path from any one vertex to any other

Directed graphs are weakly connected if there is a path between any two vertices, ignoring direction

A complete graph has an edge between every pair of vertices

Graph Representations

0. List of vertices + list of edges
1. 2-D matrix of vertices (marking edges in the cells) “adjacency matrix”
2. List of vertices each with a list of adjacent vertices “adjacency list”

Things we might want to do:
• iterate over vertices
• iterate over edges
• iterate over vertices adj. to a vertex
• check whether an edge exists

Some Applications: Moving Around Washington

What’s the shortest way to get from Seattle to Pullman?

Edge labels:

Some Applications: Moving Around Washington

What’s the fastest way to get from Seattle to Pullman?

Edge labels:
Some Applications: Reliability of Communication

If Wenatchee’s phone exchange goes down, can Seattle still talk to Pullman?

Some Applications: Bus Routes in Downtown Seattle

If we're at 3rd and Pine, how can we get to 1st and University using Metro?

Representation 1: Adjacency Matrix

A $|V| \times |V|$ array in which an element (u, v) is true if and only if there is an edge from u to v.

Space requirements: runtime:

Representation 2: Adjacency List

A $|V|$-ary list (array) in which each entry stores a list (linked list) of all adjacent vertices.

Space requirements: runtime:

Representation

- adjacency matrix:

 \[
 A[u][v] = \begin{cases}
 \text{weight}, & \text{if } (u, v) \in E \\
 0, & \text{if } (u, v) \notin E
 \end{cases}
 \]

 1 2 3 4

 1 2 3 4

Representation

- adjacency list:

 1 2 3 4

 3 4

 1 2 3 4
Application: Topological Sort

Given a directed graph, $G = (V, E)$, output all the vertices in V such that no vertex is output before any other vertex with an edge to it.

Is the output unique?

Student Activity

```cpp
void Graph::topsort()
{
    Vertex v, w;
    labelEachVertexWithItsIn-degree();

    for(int count=0; count<NUM_VERTICES; count++)
    {
        v = findNewVertexOfDegreeZero();
        v.topoNum = count;
        for each w adjacent to v
        w.indegree--;
    }
}
```

Student Activity

```cpp
void Graph::topsort()
{
    Queue q(NUM_VERTICES); int counter = 0; Vertex v, w;
    labelEachVertexWithItsIn-degree();

    q.makeEmpty();
    for each vertex v
    if (v.indegree == 0)
    q.enqueue(v);

    while (!q.isEmpty())
    {
        v = q.dequeue();
        v.topologicalNum = ++counter;
        for each w adjacent to v
        if (--w.indegree == 0)
        q.enqueue(w);
    }
}
```

Runtime:

Student Activity

Runtime: