
1

Disjoint Sets and Dynamic
Equivalence Relations

CSE 373

Data Structures and Algorithms

5/08/09 2

Today’s Outline
• Announcements

– Assignment #4 coming soon.

– Midterm #2, Wed May 20th

• Today’s Topics:
– Disjoint Sets & Dynamic Equivalence

5/08/09 3

Motivation
Some kinds of data analysis require keeping track of

transitive relations.
Equivalence relations are one family of transitive

relations.
Grouping pixels of an image into colored regions is

one form of data analysis that uses “dynamic
equivalence relations”.

Creating mazes without cycles is another application.
Later we’ll learn about “minimum spanning trees”

for networks, and how the dynamic equivalence
relations help out in computing spanning trees.

5/08/09 4

Disjoint Sets
• Two sets S1 and S2 are disjoint if and only if they

have no elements in common.

• S1 and S2 are disjoint iff S1 ∩ S2 = ∅

For example {a, b, c} and {d, e} are disjoint.

But {x, y, z} and {t, u, x} are not disjoint.

(the intersection of the two sets is the empty set)

5/08/09 5

Equivalence Relations
• A binary relation R on a set S is an equivalence

relationprovided it is reflexive, symmetric, and
transitive:

• Reflexive - R(a,a) for all a in S.
• Symmetric - R(a,b) → R(b,a)
• Transitive - R(a,b) ∧ R(b,c) → R(a,c)

Is ≤ an equivalence relation on integers?
Is “is connected by roads” an equivalence relation on

cities?

5/08/09 6

Induced Equivalence Relations
• Let S be a set, and let P be a partition of S.

P = { S1, S2, . . . , Sk }

P being a partition of S means that:
i ≠ j → Si ∩ Sj = ∅ and

S1 ∪ S2 ∪ . . . ∪ Sk = S

• P induces an equivalence relation R on S:

R(a,b) provided a and b are in the same subset(same
element of P).

So given any partition P of a set S, there is a corresponding
equivalence relation R on S.

2

5/08/09 7

Example
• S = {a, b, c, d, e}

P = { S1, S2, S3 }

S1 = {a, b, c}, S2 = {d}, S3 = {e}

P being a partition of S means that:
i ≠ j → Si ∩ Sj = ∅ and

S1 ∪ S2 ∪ . . . ∪ Sk = S

• P induces an equivalence relation R on S:

R = { (a,a), (b,b), (c,c), (a,b), (b,a), (a,c), (c,a),
(b,c), (c,b),

(d,d),

(e,e) }

5/08/09 8

Introducing the UNION-FIND ADT

• Also known as the Disjoint Sets ADT or the
Dynamic Equivalence ADT.

• There will be a set S of elements that does not
change.

• We will start with a partition P0, but we will
modify it over time by combining sets.

• The combining operation is called “UNION”

• Determining which set (of the current partition) an
element of S belongs to is called the “FIND”
operation.

5/08/09 9

Example
• Maintain a set of pairwise disjoint* sets.

– {3,5,7}, {4,2,8}, {9}, {1,6}

• Each set has a unique name: one of its members
– {3,5,7}, {4,2,8}, { 9}, { 1,6}

*Pairwise Disjoint: For any two sets you pick, their intersection
will be empty)

5/08/09 10

Union
• Union(x,y) – take the union of two sets named x

and y
– {3,5,7} , {4,2,8}, { 9}, { 1,6}

– Union(5,1)

{3,5,7,1,6}, {4,2,8}, { 9},

To perform the union operation, we replace sets x and y
by (x ∪ y)

5/08/09 11

Find
• Find(x) – return the name of the set containing x.

– {3,5,7,1,6}, {4,2,8}, { 9},

– Find(1) = 5

– Find(4) = 8

5/08/09 12

Application: Building Mazes
• Build a random maze by erasing edges.

3

5/08/09 13

Building Mazes (2)
• Pick Start and End

Start

End

5/08/09 14

Building Mazes (3)
• Repeatedly pick random edges to delete.

Start

End

5/08/09 15

Desired Properties
• None of the boundary is deleted

• Every cell is reachable from every other cell.

• Only one path from any one cell to another (There
are no cycles – no cell can reach itself by a path
unless it retraces some part of the path.)

5/08/09 16

A Cycle

Start

End

5/08/09 17

A Good Solution

Start

End

5/08/09 18

A Hidden Tree

Start

End

4

5/08/09 19

Number the Cells

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

We have disjoint sets P ={ {1}, {2}, {3}, {4},… {36} } each cell is unto itself.
We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), … } 60 edges total.

5/08/09 20

Basic Algorithm
• P = set of sets of connected cells
• E = set of edges
• Maze= set of maze edges (initially empty)

While there is more than one set in P {
pick a random edge (x,y) and remove from E
u := Find(x);
v := Find(y);
if u ≠ v then // removing edge (x,y) connects previously non-

// connected cells x and y - leave this edge removed!
Union(u,v)

else // cells x and y were already connected, add this
// edge to set of edges that will make up final maze.

add (x,y) to Maze
}
All remaining members of E together with Mazeform the maze

5/08/09 21

Example Step

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

P
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,30,32
33,34,35,36}

Pick (8,14)

5/08/09 22

Example
P
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Find(8) = 7
Find(14) = 20

P
{1,2,7,8,9,13,19,14,20 26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Union(7,20)

5/08/09 23

Example

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

P
{1,2,7,8,9,13,19

14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Pick (19,20)

5/08/09 24

Example at the End

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

P
{1,2,3,4,5,6,7,… 36}

E
Maze

5

5/08/09 25

Implementing the Disjoint Sets ADT
• n elements,

Total Cost of:m finds, ≤ n-1 unions

• Target complexity: O(m+n)
i.e. O(1) amortized

• O(1) worst-case for find as well as union would be
great, but…

Known result: both find and union cannot be done
in worst-case O(1) time

5/08/09 26

Up-Tree for Disjoint Union/Find

1 2 3 4 5 6 7Initial state:

1

2

3

45

6

7After several
Unions:

Roots are the names of each set.

5/08/09 27

Find Operation

Find(x) - follow x to the root and return the root

1

2

3

45

6

7

Find(6) = 7

5/08/09 28

Union Operation

Union(x,y) - assuming x and y are roots, point y to x.

1

2

3

45

6

7

Union(1,7)

5/08/09 29

Simple Implementation
• Array of indices

1

2

3

45

6

7

0 1 0 7 7 5 0

1 2 3 4 5 6 7

up

Up[x] = 0 means
x is a root.

5/08/09 30

Implementation
int Find(int x) {

while(up[x] != 0) {

x = up[x];

}

return x;

}

void Union(int x, int y) {

up[y] = x;

}

runtime for Union():

runtime for Find():

runtime for m Finds and n-1 Unions:

6

5/08/09 31

Find Solutions

Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
if up[x] = 0 then return x
else return Find(up,up[x]);
}

Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
while up[x] ≠ 0 do

x := up[x];
return x;
}

Recursive

Iterative

5/08/09 32

Now this doesn’t look good �
Can we do better? Yes!

1. Improve unionso that find only takes Θ(log n)
• Union-by-size
• Reduces complexity to Θ(m log n + n)

2. Improve find so that it becomes even better!
• Path compression
• Reduces complexity to almostΘ(m + n)

5/08/09 33

A Bad Case

1 2 3 n…

1

2 3 n

Union(2,1)

1

2

3 n

Union(3,2)

Union(n,n-1)

…

…

1

2

3

n

:
:

Find(1) n steps!!

5/08/09 34

Weighted Union

• Weighted Union
– Always point the smaller (total # of nodes) tree to the

root of the larger tree

1

2

3

45

6

7

W-Union(1,7)

2 41

5/08/09 35

Example Again

1 2 3 n

1

2 3 n

W-Union(2,1)

1

2

3

n

W-Union(3,2)

W-Union(n,2)

…

… :
:

1

2

3 n

…

Find(1) constant time
…

5/08/09 36

Analysis of Weighted Union

With weighted union an up-tree of height h has weight at
least 2h.

• Proof by induction
– Basis: h = 0. The up-tree has one node, 20 = 1

– Inductive step: Assume true for all h’ < h.

h-1
Minimum weight
up-tree of height h
formed by
weighted unions

T1 T2

T W(T1) > W(T2) > 2h-1

Weighted
union

Induction
hypothesis

W(T) > 2h-1 + 2h-1 = 2h

7

5/08/09 37

Analysis of Weighted Union (cont)
Let T be an up-tree of weight n formed by weighted

union. Let h be its height.
n > 2h

log2 n > h

• Find(x) in tree T takes O(log n) time.
– Can we do better?

5/08/09 38

Worst Case for Weighted Union

n/2 Weighted Unions

n/4 Weighted Unions

5/08/09 39

Example of Worst Case (cont’)

After n/2 + n/4 + …+ 1 Weighted Unions:

Find
If there are n = 2k nodes then the longest
path from leaf to root has length k.

log2n

5/08/09 40

Array Implementation

1

2

3

45

6

7
2 41

-1
2

1 -1
1

7 7 5 -1
4

1 2 3 4 5 6 7
up

weight

5/08/09 41

Weighted Union
W-Union(i,j : index){
//i and j are roots
wi := weight[i];
wj := weight[j];
if wi < wj then
up[i] := j;
weight[j] := wi + wj;

else
up[j] :=i;
weight[i] := wi +wj;

}

new runtime for Union():

new runtime for Find():

runtime for m finds and n-1 unions =

5/08/09 42

Union-by-size: Find Analysis
• Complexity of Find: O(max node depth)

• All nodes start at depth 0
• Node depth increases:

– Only when it is part of smaller tree in a union
– Only by one level at a time
Result: tree size doubles when node depth increases by 1

Find runtime = O(node depth) =

runtime for m finds and n-1 unions =

8

5/08/09 43

Nifty Storage Trick
• Use the same array representation as before

• Instead of storing –1 for the root,
simply store –size

[Read section 8.4, page 299]

5/08/09 44

How about Union-by-height?
• Can still guarantee O(logn) worst case depth

Left as an exercise!

• Problem: Union-by-height doesn’t combine very well with
the new find optimization technique we’ll see next

5/08/09 45

Path Compression
• On a Find operation point all the nodes on the search path

directly to the root.

1

2

3

45

6

7

PC-Find(3)

8 9

10

5/08/09 46

Path Compression

• On a Find operation point all the nodes on the search path
directly to the root.

1

2

3

45

6

7 1

2 3 456

7

PC-Find(3)

8 9

10

8 910

5/08/09 47

Draw the result of Find(e):

f ha

b

c

d

e

g

i

Student Activity

5/08/09 48

Self-Adjustment Works

PC-Find(x)

x

9

5/08/09 49

Path Compression Find
PC-Find(i : index) {

r := i;
while up[r] ≠ -1 do //find root

r := up[r];

// Assert: r= the root, up[r] = -1
if i ≠ r then // if i was not a root

temp := up[i];

while temp ≠ r do // compress path
up[i] := r;
i := temp;
temp := up[temp]

return(r)
}

(New?) runtime for Find:

5/08/09 50

Path Compression: Code
int Find(Object x) {

// x had better be in

// the set!

int xID = hTable[x];

int i = xID;

// Get the root for

// this set

while(up[xID] != -1) {

xID = up[xID];

}

// Change the parent for

// all nodes along the path

while(up[i] != -1) {

temp = up[i];

up[i] = xID;

i = temp;

}

return xID;

}

(New?) runtime for Find:

5/08/09 51

Interlude: A Really Slow Function
Ackermann’s function is a reallybig function A(x, y) with

inverse α(x, y) which is reallysmall

How fast does α(x, y) grow?
α(x, y) = 4 for x far larger than the number of atoms in the
universe (2300)

α shows up in:
– Computation Geometry (surface complexity)
– Combinatorics of sequences

5/08/09 52

A More Comprehensible Slow Function

log* x = number of times you need to compute
log to bring value down to at most 1

E.g. log* 2 = 1
log* 4 = log* 22 = 2
log* 16 = log* 222 = 3 (log log log 16 = 1)

log* 65536 = log* 2222 = 4 (log log log log 65536 = 1)

log* 265536= …………… = 5

Take this: α(m,n) grows even slower than log* n !!

5/08/09 53

Complex Complexity of
Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, p union and find
operations on a set of n elements have worst case complexity of
O(p ⋅ α(p, n))

For all practical purposes this is amortized constant time:

O(p ⋅ 4) for p operations!

• Very complex analysis – worse than splay tree analysis etc. that
we skipped!

5/08/09 54

Disjoint Union / Find
with Weighted Union and PC

• Worst case time complexity for a W-Union is O(1)
and for a PC-Find is O(log n).

• Time complexity for m ≥ n operations on n
elements is O(m log* n) where log* n is a very
slow growing function.
– Log * n < 7 for all reasonable n. Essentially constant

time per operation!

10

5/08/09 55

Amortized Complexity
• For disjoint union / find with weighted union and

path compression.
– average time per operation is essentially a constant.

– worst case time for a PC-Find is O(log n).

• An individual operation can be costly, but over
time the average cost per operation is not.

