Today’s Outline

• Announcements
 – Assignment #3 due Thurs, May 7th.

• Today’s Topics:
 – Priority Queues
 • Binary Min Heap - buildheap
 • D-Heaps
 • Leftist Heaps

Facts about Binary Min Heaps
Observations:
• finding a child/parent index is a multiply/divide by two
• operations jump widely through the heap
• each percolate step looks at only two new nodes
• inserts are at least as common as deleteMins

Realities:
• division/multiplication by powers of two are equally fast
• looking at only two new pieces of data: bad for cache!
• with huge data sets, disk accesses dominate

Representing Complete Binary Trees in an Array

From node i:
left child: right child: parent:

implicit (array) implementation:

A Solution: d-Heaps

• Each node has d children
• Still representable by array
• Good choices for d:
 – (choose a power of two for efficiency)
 – fit one set of children in a cache line
 – fit one set of children on a memory page/disk block
Operations on d-Heap

- Insert: runtime =
- deleteMin: runtime =

Priority Queues

(Leftist Heaps)

One More Operation

- Merge two heaps. Ideas?

New Operation: Merge

Given two heaps, merge them into one heap
- first attempt: insert each element of the smaller heap into the larger.

 runtime:
- second attempt: concatenate binary heaps’ arrays and run buildHeap.

 runtime:

Leftist Heaps

Idea:
 Focus all heap maintenance work in one small part of the heap

Leftist heaps:
 1. Most nodes are on the left
 2. All the merging work is done on the right

Definition: Null Path Length

null path length (npl) of a node x = the number of nodes between x and a null in its subtree

OR

$npl(x) = \min$ distance to a descendant with 0 or 1 children

- $npl(null) = -1$
- $npl(leaf, aka zero children) = 0$
- $npl(node with one child) = 0$

Equivalent definitions:
 1. $npl(x)$ is the height of largest perfect subtree rooted at x
 2. $npl(x) = 1 + \min\{npl(left(x)), npl(right(x))\}$
Leftist Heap Properties

- Heap-order property
 - parent’s priority value is ≤ to childrens’ priority values
 - result: minimum element is at the root

- Leftist property
 - For every node \(x \), \(npl(\text{left}(x)) \geq npl(\text{right}(x)) \)
 - result: tree is at least as “heavy” on the left as the right

Are leftist trees…
- complete?
- balanced?

Right Path in a Leftist Tree is Short (#1)

Claim: The right path is as short as any in the tree.

Proof: (By contradiction)

Pick a shorter path: \(D_1 < D_2 \)

Say it diverges from right path at \(x \)

\(npl(L) \leq D_1 - 1 \) because of the path of length \(D_1 - 1 \) to null

\(npl(R) \geq D_2 - 1 \) because every node on right path is leftist

Leftist property at \(x \) violated!

Right Path in a Leftist Tree is Short (#2)

Claim: If the right path has \(r \) nodes, then the tree has at least \(2^{r-1} - 1 \) nodes.

Proof: (By induction)

Base case: \(r = 1 \). Tree has at least \(2^1 - 1 = 1 \) node

Inductive step: assume true for \(r' < r \). Prove for tree with right path at least \(r \).

1. Right subtree: right path of \(r-1 \) nodes

2. Left subtree: also right path of length at least \(r-1 \) (by previous slide)

Total tree size: \((2^{r-1} - 1) + (2^{r-1} - 1) + 1 = 2^r - 1 \)

Why do we have the leftist property?

Because it guarantees that:

- the right path is really short compared to the number of nodes in the tree

A leftist tree of \(N \) nodes, has a right path of at most \(\log(N+1) \) nodes

Idea – perform all work on the right path

Merge two heaps (basic idea)

- Put the smaller root as the new root,
- Hang its left subtree on the left.
- Recursively merge its right subtree and the other tree.
Merging Two Leftist Heaps

- merge(T₁, T₂) returns one leftist heap containing all elements of the two (distinct) leftist heaps T₁ and T₂

Merge Example

Sewing Up the Example

Finally…
Other Heap Operations

- insert
- deleteMin

Operations on Leftist Heaps

- **merge** with two trees of total size n: $O(\log n)$
- **insert** with heap size n: $O(\log n)$
 - pretend node is a size 1 leftist heap
 - insert by merging original heap with one node heap

- **deleteMin** with heap size n: $O(\log n)$
 - remove and return root
 - merge left and right subtrees

Leftist Heaps: Summary

Good
-
-

Bad
-
-

Amortized Time

amortized time: Running time limit resulting from “writing off” expensive runs of an algorithm over multiple cheap runs of the algorithm, usually resulting in a lower overall running time than indicated by the worst possible case.

If M operations take total $O(M \log N)$ time, amortized time per operation is $O(\log N)$

Difference from **average time:**

Skew Heaps

Problems with leftist heaps
- extra storage for npl
- extra complexity/logic to maintain and check npl
- right side is “often” heavy and requires a switch

Solution: skew heaps
- “blindly” adjusting version of leftist heaps
- merge always switches children when fixing right path
- amortized time for: merge, insert, deleteMin = $O(\log n)$
- however, worst case time for all three = $O(n)$

Merging Two Skew Heaps

Only one step per iteration, with children always switched
Skew Heap Code

```c
void merge(heap1, heap2) {
    case {
        heap1 == NULL: return heap2;
        heap2 == NULL: return heap1;
        heap1.findMin() < heap2.findMin():
            temp = heap1.right;
            heap1.right = heap1.left;
            heap1.left = merge(heap2, temp);
            return heap1;
        otherwise:
            return merge(heap2, heap1);
    }
}
```

Runtime Analysis:
Worst-case and Amortized
• No worst case guarantee on right path length!
• All operations rely on merge

⇒ worst case complexity of all ops =
• Amortized Analysis (Chapter 11)
• Result: M merges take time $M \log n$
⇒ amortized complexity of all ops =

Comparing Priority Queues

- Binary Heaps
- Leftist Heaps
- d-Heaps
- Skew Heaps