Hashing

CSE 373
Data Structures and Algorithms

Hash Tables

- Constant time accesses!
- A hash table is an array of some fixed size, usually a prime number.
- General idea:

<table>
<thead>
<tr>
<th>key space (e.g., integers, strings)</th>
<th>TableSize - 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>hash function: h(K)</td>
<td></td>
</tr>
</tbody>
</table>

Example

- key space = integers
- TableSize = 10
- h(K) = K mod 10
- Insert: 7, 18, 41, 94

Another Example

- key space = integers
- TableSize = 6
- h(K) = K mod 6
- Insert: 7, 18, 41, 34

Hash Functions

1. simple/fast to compute,
2. Avoid collisions
3. have keys distributed evenly among cells.

Perfect Hash function:

Sample Hash Functions:

1. h(s) = h_i mod TableSize
2. h(s) = \(\sum_{i=0}^{k-1} s_i \) mod TableSize
3. h(s) = \(\sum_{i=0}^{k-1} s_i \times 37^i \) mod TableSize
Designing a Hash Function for web URLs

\[s = s_0 s_1 s_2 \ldots s_{k-1} \]

Issues to take into account:

\[h(s) = \]

Compare Hash Functions for web URLs

\[h(s) = \left(\sum_{i=0}^{n} \text{charAt}(s_i) \right) \mod \text{TableSize} \]

Pros:

Cons:

\[h(s) = \left(\sum_{i=0}^{n} \text{charAt}(s_i) \cdot 3^i \right) \mod \text{TableSize} \]

Pros:

Cons:

Collision Resolution

Collision: when two keys map to the same location in the hash table.

Two ways to resolve collisions:
1. Separate Chaining
2. Open Addressing (linear probing, quadratic probing, double hashing)

Separate Chaining

Insert:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>22</td>
<td>107</td>
<td>12</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Separate chaining:** All keys that map to the same hash value are kept in a list (“bucket”).

Analysis of find

- **Defn:** The load factor, \(\lambda \), of a hash table is the ratio: \(\frac{N}{M} \leftarrow \) no. of elements \(\leftarrow \) table size

For separate chaining, \(\lambda = \) average # of elements in a bucket

- unsuccessful:
- successful:

How big should the hash table be?

- For Separate Chaining:
tableSize: Why Prime?

- Suppose
 - data stored in hash table: 7160, 493, 60, 55, 321, 900, 810
 - tableSize = 10
 - data hashes to 0, 3, 5, 1, 0
 - tableSize = 11
 - data hashes to 10, 9, 5, 0, 2, 9

Real-life data tends to have a pattern
Being a multiple of 11 is usually not the pattern ☹

Open Addressing

- **Insert:**
 - 38
 - 19
 - 8
 - 109
 - 10

- **Linear Probing:** after checking spot h(k), try spot h(k)+1, if that is full, try h(k)+2, then h(k)+3, etc.

Terminology Alert!

- “**Open** Hashing” equals “Closed Hashing”
- “Separate Chaining” equals “**Open** Addressing”

Weiss

Linear Probing

- f(i) = i
- Probe sequence:
 - 0th probe = h(k) mod TableSize
 - 1st probe = (h(k) + 1) mod TableSize
 - 2nd probe = (h(k) + 2) mod TableSize
 - ... i'th probe = (h(k) + i) mod TableSize

Write pseudocode for find(k) for Open Addressing with linear probing

- Find(k) returns i where T(i) = k

Linear Probing – Clustering

[R. Sedgewick]

no collision

collision in small cluster

collision in large cluster

Student Activity
Load Factor in Linear Probing

- For any $\lambda < 1$, linear probing will find an empty slot.
- Expected # of probes (for large table sizes):
 - successful search: $\frac{1}{2} \left(1 + \frac{1}{1 - \lambda} \right)$
 - unsuccessful search: $\frac{1}{2} \left(1 + \frac{1}{1 - \lambda^2} \right)$
- Linear probing suffers from primary clustering.
- Performance quickly degrades for $\lambda > 1/2$.

Quadratic Probing

- $f(i) = i^2$
- Probe sequence:
 0th probe = $h(k) \mod \text{TableSize}$
 1st probe = $(h(k) + 1) \mod \text{TableSize}$
 2nd probe = $(h(k) + 4) \mod \text{TableSize}$
 3rd probe = $(h(k) + 9) \mod \text{TableSize}$
 ... i^{th} probe = $(h(k) + i^2) \mod \text{TableSize}$

Quadratic Probing: Success guarantee for $\lambda < \frac{1}{2}$

- If size is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in $\frac{\text{size}}{2}$ probes or fewer.
- by contradiction: suppose that for some $i < j$:
 $(h(x) + i^2) \mod \text{size} = (h(x) + j^2) \mod \text{size}$
 $\Rightarrow i^2 \mod \text{size} = j^2 \mod \text{size}$
 $\Rightarrow (i-j)(i+j) \mod \text{size} = 0$
 BUT size does not divide $(i-j)$ or $(i+j)$.

Quadratic Probing: Properties

- For any $\lambda < \frac{1}{2}$, quadratic probing will find an empty slot; for bigger λ, quadratic probing may find a slot.
- Quadratic probing does not suffer from primary clustering; keys hashing to the same area are not bad.
- But what about keys that hash to the same spot?
 - Secondary Clustering!
Quadratic Probing Works for \(\lambda < 1/2 \)

- If HSize is prime then
 \((h(x) + i^2) \mod \text{HSize} \neq (h(x) + j^2) \mod \text{HSize}\) for \(i \neq j\) and \(0 \leq i,j < \text{HSize}/2\).
- Proof

 \begin{align*}
 (h(x) + i^2) \mod \text{HSize} &= (h(x) + j^2) \mod \text{HSize} \\
 (i^2 - j^2) \mod \text{HSize} &= 0 \\
 \Rightarrow \ HSize \text{ does not divide } (i-j) \text{ or } (i+j)
 \end{align*}

Double Hashing

\[f(i) = i \cdot g(k) \]
where \(g\) is a second hash function

- Probe sequence:

 \begin{align*}
 0^\text{th} & \text{ probe } = h(k) \mod \text{TableSize} \\
 1^\text{st} & \text{ probe } = (h(k) + g(k)) \mod \text{TableSize} \\
 2^\text{nd} & \text{ probe } = (h(k) + 2\cdot g(k)) \mod \text{TableSize} \\
 3^\text{rd} & \text{ probe } = (h(k) + 3\cdot g(k)) \mod \text{TableSize} \\
 \cdots
 \end{align*}

Resolving Collisions with Double Hashing

<table>
<thead>
<tr>
<th>Hash Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H(k) = k \mod M)</td>
</tr>
<tr>
<td>(H_2(k) = 1 + ((k/M) \mod (M-1)))</td>
</tr>
</tbody>
</table>

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

- \(13\)
- \(28\)
- \(33\)
- \(147\)
- \(43\)

Rehashing

Idea: When the table gets too full, create a bigger table (usually 2x as large) and hash all the items from the original table into the new table.

- When to rehash?
 - half full (\(\lambda = 0.5\))
 - when an insertion fails
 - some other threshold
- Cost of rehashing?

Hashing Summary

- Hashing is one of the most important data structures.
- Hashing has many applications where operations are limited to find, insert, and delete.
- Dynamic hash tables have good amortized complexity.