Third Midterm (a.k.a. Final)

• Friday, 12:30 – 1:30, here in class

• Logistics: Closed Book

• Comprehensive
 – Everything up to and including Network Flow
 – Not the material we will cover this Wednesday
B+ Trees
(book calls these B-trees)

• Each internal still has (up to) $M-1$ keys:

• Order property:
 – subtree between two keys x and y
 contain leaves with values v
 such that $x \leq v < y$
 – Note the “\leq”

• Leaf nodes contain up to L sorted keys.
B+ Tree Structure Properties

Root (special case)
- has between 2 and M children (or root could be a leaf)

Internal nodes
- store up to $M-1$ keys
- have between $\lceil M/2 \rceil$ and M children

Leaf nodes
- where data is stored
- all at the same depth
- contain between $\lceil L/2 \rceil$ and L data items

Nodes are at least $\frac{1}{2}$ full
Leaves are at least $\frac{1}{2}$ full
B+ Tree: Example

B+ Tree with \(M = 4 \) (# pointers in internal node)
and \(L = 5 \) (# data items in leaf)

Data objects… which I’ll ignore in slides

Definition for later: “neighbor” is the next sibling to the left or right.
B+ trees vs. AVL trees

Suppose again we have $n = 2^{30} \approx 10^9$ items:

- Depth of AVL Tree

 43

- Depth of B+ Tree with $M = 256$, $L = 256$

 $\log_{128} 10^9 = 4.3$

So let’s see how we do this...
Thinking about B+ Trees

- B+ Tree insertion can cause (expensive) splitting and propagation up the tree
- B+ Tree deletion can cause (cheap) adoption or (expensive) merging and propagation up the tree
- Split/merge/propagation is rare if M and L are large (Why?)
- Pick branching factor M and data items/leaf L such that each node takes one full page/block of memory/disk.

Only $1/L$ inserts cause split, only $1/M$ of these go up!
Hash Tables

- Find, insert, delete: constant time on average!
- A **hash table** is an array of some fixed size.
- General idea:

 ![Diagram of hash table]

 - **hash function**: \(\text{index} = h(K) \)
 - **key space** (e.g., integers, strings)
 - **hash table**: 0
 - 0
 - ...
 - TableSize – 1
Separate Chaining

All keys that map to the same hash value are kept in a list (or “bucket”).

Thoughts about this?

Our goal is to keep it such that a simple list is good enough.

Separate chaining: All keys that map to the same hash value are kept in a list (or “bucket”).
Open Addressing

```
0
1  109
2
3
4
5
6
7
8  38
9  19
```

Insert:
38
19
8
109
10

Try \(h(K) \)
If full, try \(h(K)+1 \).
If full, try \(h(K)+2 \).
If full, try \(h(K)+3 \).
Etc…

What is \(f(i) \)?
Linear Probing

\[f(i) = i \]

- Probe sequence:

 0th probe = \(h(K) \mod \text{TableSize} \)

 1th probe = \((h(K) + 1) \mod \text{TableSize} \)

 2th probe = \((h(K) + 2) \mod \text{TableSize} \)

 \ldots

 \(ith \) probe = \((h(K) + i) \mod \text{TableSize} \)
Linear Probing – Clustering

no collision

no collision

collision in small cluster

collision in large cluster

[12/07/2009]
Quadratic Probing

\[f(i) = i^2 \]

- Probe sequence:

 \[
 \begin{align*}
 0^{th} \text{ probe} & = h(K) \% \text{TableSize} \\
 1^{st} \text{ probe} & = (h(K) + 1) \% \text{TableSize} \\
 2^{nd} \text{ probe} & = (h(K) + 4) \% \text{TableSize} \\
 3^{rd} \text{ probe} & = (h(K) + 9) \% \text{TableSize} \\
 \vdots & \\
 i^{th} \text{ probe} & = (h(K) + i^2) \% \text{TableSize}
 \end{align*}
 \]
Double Hashing

Idea: given two different (good) hash functions $h(K)$ and $g(K)$, it is unlikely two keys to collide with both.

So...let’s try probing with a second hash function:

$$f(i) = i \times g(K)$$

- Probe sequence:
 - 0^{th} probe = $h(K) \ % \ TableSize$
 - 1^{th} probe = $(h(K) + g(K)) \ % \ TableSize$
 - 2^{th} probe = $(h(K) + 2 \times g(K)) \ % \ TableSize$
 - 3^{th} probe = $(h(K) + 3 \times g(K)) \ % \ TableSize$
 - i^{th} probe = $(h(K) + i \times g(K)) \ % \ TableSize$
Deletion in Separate Chaining

How do we delete an element with separate chaining?

Easy, just delete the item from the bucket
Deletion in Open Addressing

Can we do something similar for open addressing?

• Delete
• Find
• Insert

h(k) = k \% 7
Linear probing

Delete(23)
Find(59)
Insert(30)

Need to leave a marker of a deletion
Rehashing

Idea: When the table gets too full, create a bigger table (usually 2x as large) and hash all the items from the original table into the new table.

- **When to rehash?**
 - Separate chaining: full ($\lambda = 1$)
 - Open addressing: half full ($\lambda = 0.5$)
 - When an insertion fails
 - Some other threshold

- **Cost of a single rehashing?** $O(N)$
Why Sort?

- Allows binary search of an N-element array in $O(\log N)$ time
- Allows $O(1)$ time access to kth largest element in the array for any k
- People tend to like their output sorted

- Sorting algorithms are a frequently used and heavily studied family of algorithms in computer science
Stability

A sorting algorithm is **stable** if:

– Items in the input with the same value end up in the same order as when they began.

<table>
<thead>
<tr>
<th>Input</th>
<th>Stable Sort</th>
<th>Unstable sort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams</td>
<td>Adams</td>
<td>Adams</td>
</tr>
<tr>
<td>Black</td>
<td>Smith</td>
<td>Smith</td>
</tr>
<tr>
<td>Brown</td>
<td>Black</td>
<td>Washington</td>
</tr>
<tr>
<td>Jackson</td>
<td>Jackson</td>
<td>Jackson</td>
</tr>
<tr>
<td>Jones</td>
<td>Washington</td>
<td>Black</td>
</tr>
<tr>
<td>Smith</td>
<td>White</td>
<td>White</td>
</tr>
<tr>
<td>Thompson</td>
<td>Wilson</td>
<td>Wilson</td>
</tr>
<tr>
<td>Washington</td>
<td>Brown</td>
<td>Thompson</td>
</tr>
<tr>
<td>White</td>
<td>Jones</td>
<td>Brown</td>
</tr>
<tr>
<td>Wilson</td>
<td>Thompson</td>
<td>Jones</td>
</tr>
</tbody>
</table>
Sorting: The *Big* Picture

Given *n* comparable elements in an array, sort them in an increasing order.

Simple algorithms: $O(n^2)$
- Insertion sort
- Selection sort
- Bubble sort

Fancier algorithms: $O(n \log n)$
- Heap sort
- Binary tree sort
- Merge sort
- Quick sort (avg case)

Comparison lower bound: $\Omega(n \log n)$

Specialized algorithms: $O(n)$
- Bucket sort
- Radix sort
- External sorting

Handling huge data sets
Selection Sort: Idea

1. Find the smallest element, put it 1st
2. Find the next smallest element, put it 2nd
3. Find the next smallest, put it 3rd
4. And so on ...
Bubble Sort Idea

• Take a pass through the array
 – If a pair of neighboring elements are out of sort order, swap them.

• Take passes until no swaps are needed at any point in the pass.
Insertion Sort: Idea

1. One element is by definition sorted
2. Sort first 2 elements.
3. Insert 3rd element in order.
 • (First 3 elements are now sorted.)
4. Insert 4th element in order
 • (First 4 elements are now sorted.)
5. And so on...
Heap Sort: Sort with a Binary Heap

2, 4, 6, 16, 17, 31, 54

Use a max-heap, do it in-place

Runtime: \(O(n \log n)\)
“Divide and Conquer”

• Two divide and conquer sorting methods:

 • **Idea 1:** Divide array into two halves, *recursively* sort left and right halves, then *merge* two halves \rightarrow known as Mergesort

 • **Idea 2:** Partition array into small items and large items, then recursively sort the two smaller portions \rightarrow known as Quicksort
Mergesort

- Divide it in two at the midpoint
- Conquer each side in turn (by recursively sorting)
- Merge two halves together
Iterative Mergesort

- Merge by 1
- Merge by 2
- Merge by 4
- Merge by 8
- Merge by 16

↓ Copy if Needed
Quicksort

• Quicksort uses a divide and conquer strategy, but does not require the $O(N)$ extra space that MergeSort does

 – Partition array into left and right sub-arrays
 • the elements in left sub-array are all less than pivot
 • elements in right sub-array are all greater than pivot

 – Recursively sort left and right sub-arrays

 – Concatenate left and right sub-arrays in $O(1)$ time
Quicksort Example

```
| 8 | 2 | 9 | 4 | 5 | 3 | 1 | 6 |
```

Divide

```
2  4   3   1
8   9   6
2   1
9   4
6   2
```

Conquer

```
1 element
```

Divide

```
2  4  3  1
8   9   6
5
```

Conquer

```
```

Divide

```
2  4   3   1
8   9   6
5
```

Conquer

```
```

Divide

```
2   3   4   5
6   8   9
1   2   3   4
```
So Which Is Best?

• It’s a trick question, a naïve question

• Myth: “Quicksort is the best in-memory sorting algorithm.”

• Mergesort and Quicksort make different tradeoffs regarding the cost of comparison and the cost of a swap

• Mergesort is also the basis for external sorting algorithms (large N sorting)
Permutations

• How many possible orderings are there?

• Example: a, b, c

\[
\begin{align*}
a < b < c & \quad b < a < c & \quad c < a < b \\
a < c < b & \quad b < c < a & \quad c < b < a
\end{align*}
\]
The leaves contain all the possible orderings of a, b, c
Lower bound on Height

• The decision tree has how many leaves:

\[L = N! \]

• A binary tree with L leaves has height at least:

\[h \geq \log_2 L \]

• So the decision tree has height:

\[h \geq \log_2 (N!) \]
\[\log(N!) = \log(N \cdot (N-1) \cdot (N-2) \cdots (2) \cdot (1)) \]
\[= \log N + \log(N-1) + \log(N-2) + \cdots + \log 2 + \log 1 \]
\[\geq \log N + \log(N-1) + \log(N-2) + \cdots + \log \frac{N}{2} \]
\[\geq \frac{N}{2} \log \frac{N}{2} \]
\[\geq \frac{N}{2} (\log N - \log 2) = \frac{N}{2} \log N - \frac{N}{2} \log 2 \]
\[= \Omega(N \log N) \]
\(\Omega(N \log N) \)

- No matter how clever you are about which comparisons you perform, your sorting algorithm will always be \(\Omega(N \log N) \)

- Your worst case will be at least \(N \log N \)

- Proving this saves us the trouble of trying to do better than this, because we cannot

- Now that’s some Computer Science
Doing Better

• So how can we do better?
 – Need to dodge one of the proof’s assumptions

• What’s our proof based in?
 – Comparisons

• Can we sort without doing comparisons?
BucketSort (aka BinSort)

If all values are known to be between 1 and K, create an array $count$ of size K, increment counts while traversing the input, and finally output the result.

Example $K=5$. Input = (5,1,3,4,3,2,1,1,5,4,5)

<table>
<thead>
<tr>
<th>count</th>
<th>array</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

Running time to sort n items? $N + K$
RadixSort

• Radix = “The base of a number system”
 – We’ll use 10 for convenience
 – Use a larger number in any implementation
 – ASCII Strings, for example, might use 128

• Idea:
 – BucketSort on one digit at a time
 • Requires stable sort!
 – After sort k, the last k digits are sorted
 – Set number of buckets: B = radix.
RadixSort

- Input: 126, 328, 636, 341, 416, 131, 328

BucketSort on lsd:

<table>
<thead>
<tr>
<th></th>
<th>341</th>
<th>131</th>
<th>636</th>
<th>416</th>
<th>328</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BucketSort on next-higher digit:

<table>
<thead>
<tr>
<th></th>
<th>416</th>
<th>126</th>
<th>328</th>
<th>636</th>
<th>131</th>
<th>341</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

BucketSort on msd:

<table>
<thead>
<tr>
<th></th>
<th>126</th>
<th>328</th>
<th>416</th>
<th>636</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Output: 126, 131, 328, 328, 341, 416, 636
Summary of sorting

$O(N^2)$ average, worst case:
- Selection Sort, Bubblesort, Insertion Sort

$O(N \log N)$ average case:
- Heapsort: In-place, not stable.
- Mergesort: $O(N)$ extra space, stable, massive data.

$\Omega(N \log N)$ worst and average case:
- Any comparison-based sorting algorithm

$O(N)$
Disjoint Set ADT

• Data: set of pairwise disjoint sets.
• Required operations
 – Union – merge two sets to create their union
 – Find – determine which set an item appears in

• A common operation sequence:
 – Connect two elements if not already connected:
 if (Find(x) ≠ Find(y)) then Union(x,y)
Up-Tree for DU/F

Initial state

1 2 3 4 5 6 7

Intermediate state

1 2

3

7

5 4

6

Roots are the names of each set.
Find Operation

- **Find(x):**
 - follow x to the root and return the root

```
Find(6) = 7
```

Diagram:

```
1 -> 2
     
3

7 -> 5
   
4

5 -> 6

Find(6) = 7
```
Union Operation

- Union(i,j):
 assuming i and j roots, point i to j.
Simple Implementation

• Array of indices

\[
\text{up} = \begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
0 & 1 & 0 & 7 & 7 & 5 & 0
\end{bmatrix}
\]

Up\[x\] = 0 means x is a root.
Weighted Union

• Weighted Union
 – Instead of arbitrarily joining two roots, always point the smaller root to the larger root
Elegant Array Implementation

2 1

1 3

4 7

2 5

4 6

1 2 3 4 5 6 7

up

weight

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>up</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>weight</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>
Elegant Array Implementation

Instead of a separate weight array, can re-use the empty parent reference
Path Compression

• On a Find operation point all the nodes on the search path directly to the root.
Graphs

Formalism representing relationships among objects

Graph $G = (V, E)$

- **Set of vertices**
 (aka nodes):
 $V = \{v_1, v_2, \ldots, v_n\}$

- **Set of edges**:
 $E = \{e_1, e_2, \ldots, e_m\}$
 where each e_i connects one vertex to another (v_j, v_k)

Graphs can be *directed* or *undirected*
Undirected Graphs

In *undirected* graphs, edges have no specific direction (edges are always two-way):

Thus, \((u, v) \in E\) implies \((v, u) \in E\). Only one of these edges needs to be in the set; the other is implicit.

Degree of a vertex: number of edges containing that vertex. (Same as number of adjacent vertices.)
Directed Graphs

In directed graphs (aka digraphs), edges have a specific direction:

Thus, \((u, v) \in E\) does not imply \((v, u) \in E\).

In-degree of a vertex: number of inbound edges. Out-degree of a vertex: number of outbound edges.
Paths and Cycles

• A path is a list of vertices \(\{v_1, v_2, \ldots, v_n\} \) such that
 \((v_i, v_{i+1}) \in E \) for all \(0 \leq i < n \).

• A cycle is a path that begins and ends at the same node.

\[
p = \{Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle\}
\]
Directed Acyclic Graphs (DAGs)

DAGs are directed graphs with no (directed) cycles.

Aside: If program’s call-graph is a DAG, then all procedure calls can be in-lined.

{Rooted, directed tree} ⊂ {DAG} ⊂ {Graph}
|E| and |V|

How many edges |E| in a graph with |V| vertices?

What if the graph is directed?

What if it is undirected and connected?

Can the following bounds be simplified?

– Arbitrary graph: $O(|E| + |V|^2)$

– Undirected, connected: $O(|E| \log |V| + |V| \log |V|)$

Some (semi-standard) terminology:

– A graph is *sparse* if it has $O(|V|)$ edges (upper bound).

– A graph is *dense* if it has $\Theta(|V|^2)$ edges.
Representation 1: Adjacency Matrix

A $|V| \times |V|$ matrix M in which an element $M[u, v]$ is true if and only if there is an edge from u to v.

Runtimes:
- Iterate over vertices? $O(|V|)$
- Iterate over edges? $O(|V|^2)$
- Iterate edges adj. to vertex? $O(|V|)$
- Existence of edge? $O(1)$

Space requirements? $O(|V|^2)$

Best for what kinds of graphs? dense
Representation 2: Adjacency List

A list (array) of length $|V|$ in which each entry stores a list (linked list) of all adjacent vertices

Runtimes:
- Iterate over vertices? $O(|V|)$
- Iterate over edges? $O(|V|+|E|)$
- Iterate edges adj. to vertex? $O(d)$
- Existence of edge? $O(d)$

Space requirements? $O(|V|+|E|)$

Best for what kinds of graphs? sparse

A list (array) of length $|V|$ in which each entry stores a list (linked list) of all adjacent vertices.

A

B

C

D
Application: Topological Sort

Given a graph, \(G = (V, E) \), output all the vertices in \(V \) sorted so that no vertex is output before any other vertex with an edge to it.

What kind of input graph is allowed? \(\text{DAG} \)

Is the output unique? No, often called a partial ordering
Topological Sort: Take Two

1. Label each vertex with its in-degree
2. Initialize a queue Q to contain all in-degree zero vertices
3. While Q not empty
 a. $v = Q$.dequeue; output v
 b. Reduce the in-degree of all vertices adjacent to v
 c. If new in-degree of any such vertex u is zero Q.enqueue(u)

Runtime: $O(|V| + |E|)$

Is the use of a queue here important?

No, can use a stack, list, set, box, etc.
Changes behavior, but result is still topological sort.
Comparison: DFS versus BFS

• Breadth-first search
 – Always finds shortest paths – optimal solutions
 – Marking visited nodes can improve efficiency, but even without this search guaranteed to terminate

• Depth-first search
 – Does not always find shortest paths
 – Must be careful to mark visited vertices, or you could go into an infinite loop if there is a cycle

• Is BFS always preferable?
Single Source Shortest Paths (SSSP)

- Given a graph G, edge costs $c_{i,j}$, and vertex s, **find the shortest paths from s to all vertices in G**.

- Is finding paths to all the vertices harder or easier than the previous problem?
 - The same difficulty
 (imagine the one we want is the last one we reach)

- But we still haven’t dealt with edge costs...
Dijkstra’s Algorithm: Idea

At each step:

1) Pick closest unknown vertex
2) Add it to known vertices
3) Update distances
Dijkstra’s Algorithm: Pseudocode

Initialize the cost of each node to ∞

Initialize the cost of the source to 0

While there are unknown nodes left in the graph
 Select an unknown node b with the lowest cost
 Mark b as known
 For each node a adjacent to b
 if b’s cost + cost of $(b, a) < a$’s old cost
 a’s cost = b’s cost + cost of (b, a)
 a’s prev path node = b
Dijkstra’s Algorithm in action

Vertex	Visited?	Cost	Found by
A | Y | 0 |
B | Y | 2 | A
C | Y | 1 | A
D | Y | 4 | A
E | Y | 11 | G
F | Y | 4 | B
G | Y | 8 | H
H | Y | 7 | F
void Graph::dijkstra(Vertex s){
 Vertex v,w;

 Initialize s.dist = 0 and set dist of all other vertices to infinity

 while (there exist unknown vertices, find the one b with the smallest distance)
 b.known = true;

 for each a adjacent to b
 if (!a.known)
 if (b.dist + weight(b,a) < a.dist){
 a.dist = (b.dist + weight(b,a));
 a.path = b;
 }

 }
}

Running time: O(|E| log |V|) – there are |E| edges to examine, and each one causes a heap operation of time O(log |V|)
How does Dijkstra’s decide which vertex to add to the Known set next?

- If path to V is shortest, path to W must be at least as long
 (or else we would have picked W as the next vertex)
- So the path through W to V cannot be any shorter!
Follow-On Question

• What if I had multiple potential start points, and need to know the minimum cost of reaching each node from any start point?

• Can do this by changing the algorithm
 – Add each start point to initial queue with cost 0

• If the algorithm is encapsulated (and highly tuned for efficiency), this seems bad
 – You need to re-implement the whole thing
 – Your implementation probably isn’t as good
Thinking About Graph Structure

• Working with graphs is often a problem of setting up the right graph so that you can apply the unmodified standard algorithm

• Change the graph, apply the encapsulated and optimized SSSP implementation
 – Add a meta-start node
 – Include 0 cost edges from it to the start nodes
Floyd-Warshall

\[
\begin{align*}
&\text{for (int } k = 1; k \leq V; k++) \\
&\quad \text{for (int } i = 1; i \leq V; i++) \\
&\quad \quad \text{for (int } j = 1; j \leq V; j++) \\
&\quad \quad \quad \text{if ((} M[i][k] + M[k][j] \text{) } < M[i][j] \text{) } \\
&\quad \quad \quad \quad M[i][j] = M[i][k] + M[k][j]
\end{align*}
\]

Invariant: After the kth iteration, the matrix includes the shortest paths for all pairs of vertices (i,j) containing only vertices 1..k as intermediate vertices

Simple for loop implementation intended to be fast (especially with the help of a modern compiler). Does not bother with if statements to filter out comparisons that will never result in a change.
Problem: Large Graphs

- It is expensive to find optimal paths in large graphs, using BFS or Dijkstra’s algorithm (for weighted graphs)

- How can we search large graphs efficiently by using “commonsense” about which direction looks most promising?
Minimum Spanning Trees

Given an undirected graph \(G = (V, E) \), find a graph \(G' = (V, E') \) such that:

- \(E' \) is a subset of \(E \)
- \(|E'| = |V| - 1 \)
- \(G' \) is connected
- \(\sum_{(u,v) \in E'} c_{uv} \) is minimal

\(G' \) is a **minimum spanning tree**.
Reducing Best to Minimum

Let $P(e)$ be the probability that an edge doesn’t fail. Define:

$$C(e) = -\log_{10}(P(e))$$

Minimizing $\sum_{e \in T} C(e)$

is equivalent to maximizing $\prod_{e \in T} P(e)$

because $\prod_{e \in T} P(e) = \prod_{e \in T} 10^{-C(e)} = 10^{-\sum_{e \in T} C(e)}$
Example of Reduction

Best Spanning Tree Problem

Minimum Spanning Tree Problem
Two Different Approaches

Prim’s Algorithm
Looks familiar!

Kruskals’s Algorithm
Completely different!
Prim’s algorithm

Idea: Grow a tree by adding an edge from the “known” vertices to the “unknown” vertices. Pick the edge with the smallest weight.
Prim’s Algorithm for MST

A node-based greedy algorithm
Builds MST by greedily adding nodes

1. Select a node to be the “root”
 • mark it as known
 • Update cost of all its neighbors
2. While there are unknown nodes left in the graph
 a. Select an unknown node b with the smallest cost to reach from some known node a
 b. Mark b as known
 c. Add (a, b) to MST
 d. Update cost of all nodes adjacent to b
Find MST using Prim’s

Start with V₁

<table>
<thead>
<tr>
<th>V</th>
<th>Kwn</th>
<th>Distance</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1</td>
<td>Y</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>v2</td>
<td>Y</td>
<td>2</td>
<td>V1</td>
</tr>
<tr>
<td>v3</td>
<td>Y</td>
<td>2</td>
<td>V4</td>
</tr>
<tr>
<td>v4</td>
<td>Y</td>
<td>1</td>
<td>V1</td>
</tr>
<tr>
<td>v5</td>
<td>Y</td>
<td>6</td>
<td>V7</td>
</tr>
<tr>
<td>v6</td>
<td>Y</td>
<td>1</td>
<td>V7</td>
</tr>
<tr>
<td>v7</td>
<td>Y</td>
<td>4</td>
<td>V4</td>
</tr>
</tbody>
</table>

Order Declared Known: V₁, V₄, V₂, V₃, V₇, V₆, V₅

Selected Edges: {V₂, V₁}, {V₃, V₄}, {V₄, V₁}, {V₅, V₇}, {V₆, V₇}, {V₇, V₄}
Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

\[G=(V,E) \]
Kruskal’s Algorithm for MST

An *edge-based* greedy algorithm
Builds MST by greedily adding edges

1. Initialize with
 - empty MST
 - all vertices marked unconnected
 - all edges unmarked
2. While there are still unmarked edges
 a. Pick the *lowest cost edge* \((u, v)\) and mark it
 b. If \(u\) and \(v\) are not already connected, add \((u, v)\) to the MST and mark \(u\) and \(v\) as connected

Sound familiar?
void Graph::kruskal()
{
 int edgesAccepted = 0;
 DisjSet s(NUM_VERTICES);

 while (edgesAccepted < NUM_VERTICES - 1)
 {
 e = smallest weight edge not deleted yet;
 // edge e = (u, v)
 uset = s.find(u);
 vset = s.find(v);
 if (uset != vset)
 {
 edgesAccepted++;
 s.unionSets(uset, vset);
 }
 }
}

2|E| finds

|E| heap ops

|V| unions
Find MST using Kruskal’s

• Is this MST unique?
• Under what condition is an MST unique?
 • Unique edge weights guarantee uniqueness

Total Cost: 14
Best-First

Path found by Best-first

Shortest Path
Network Flow

• So, how do we want to go about this?
Ford-Fulkerson Method

• Our greedy algorithm makes choices about how to route flow, and we never reconsider those choices

• Can we develop a way to efficiently reconsider the choices we already made?

• Can we do it by just modifying the graph?
Residual Graph

• Constructing a residual graph:
 – Use the same vertices
 – Edge weights are the remaining capacity on the edges, given the existing augmenting paths
 – Add additional edges for backward capacity
 – If there is a path from s to t in the residual graph, then there is available capacity there
Example

Augment along AEBCD (which saturates AE and EB, and empties I)

Flow / Capacity
Residual Capacity
Backwards flow
Min Cut - Example

Capacity of cut = 5
Coincidence?

• No, Max-flow always equals Min-cut

 – If there is a cut with capacity equal to the flow, we have a maxflow:
 • We can’t have a flow that’s bigger than the capacity cutting the graph! So any cut puts a bound on the maxflow, and if we have an equality, then we must have a maximum flow.

 – If we have a maxflow, then there are no augmenting paths left
 • Or else we could augment the flow along that path, which would yield a higher total flow.

 – If there are no augmenting paths, we have a cut of capacity equal to the maxflow
 • Pick a cut \((S,T)\) where \(S\) contains all vertices reachable in the residual graph from \(s\), and \(T\) is everything else. Then every edge from \(S\) to \(T\) must be saturated (or else there would be a path in the residual graph). So \(c(S,T) = f(S,T) = f(s,t) = |f|\) and we’re done.