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Network Flow
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Network Flow

• Given a weighted, directed graph G=(V,E)

• Treat the edge weights as capacities

• How much can we flow through the graph?

12/04/2009 2CSE 373 Fall 2009 -- Dan Suciu



Network Flow
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Network Flow: Definitions

• Define two special vertices
– source s 
– sink t

• Define a flow as a function on edges:
– Capacity: f(v,w) <= c(v,w)

– Conservation: for all u 

except source, sink

– Value of a flow: 
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Network flow: Definitions

• Capacity: We cannot overload an edge

• Conservation: Flow entering any vertex must 
equal flow leaving that vertex

• We want to maximize the value of a flow, 
subject to these constraints

• A saturated edge is at maximum capacity
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Network Flow

• So, how do we want to go about this?
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A Good Idea

• Start with flow 0
• “While there’s room for more flow, 

push more flow across the network”
– While there exists a path from s to t, 

none of whose edges are saturated
– Push more flow along that path,

until one of its edges is saturated

– Known as finding an “augmenting path”
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A Problem

• We should be able to use edges more than 
once, but how much do we have left?
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A Problem

• We should be able to use edges more than 
once, but how much do we have left?
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A Problem

• We should be able to use edges more than 
once, but how much do we have left?
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Residual Graph

• Constructing a residual graph: 
– Use the same vertices

– Edge weights are the remaining capacity on the 
edges, given the existing augmenting paths

– If there is a path from s to t in the residual graph, 
then there is available capacity there
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Example
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Example
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Example
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Augment along ABFD by 1 unit (which saturates edge BF)
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Example
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Example
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There are no paths in the residual graph, but we could fit more flow
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Ford-Fulkerson Method

• Our greedy algorithm makes choices about 
how to route flow, and we never reconsider 
those choices

• Can we develop a way to efficiently reconsider 
the choices we already made?

• Can we do it by just modifying the graph?
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Residual Graph

• Constructing a residual graph: 
– Use the same vertices

– Edge weights are the remaining capacity on the 
edges, given the existing augmenting paths

– Add additional edges for backward capacity

– If there is a path from s to t in the residual graph, 
then there is available capacity there
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Example
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Add the backwards edges, to show we can “undo” some flow
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Example
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Example
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How should we pick paths?

• Two very good heuristics (Edmonds-Karp):

– Pick the largest-capacity path available
• Otherwise, you’ll just come back to it later…

– Pick the shortest augmenting path available
• For a good example why…
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Don’t Mess this One Up
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Running Time

• If always adding shortest path

• Each augmenting path can’t be shorter, and it 
can’t always stay the same length
– So we have at most O(E) augmenting paths to 

compute for each possible length, and there are 
only O(V) possible lengths.

– Each path takes O(E) time to compute

• Total time = O(E2V)
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Network Flows

• What about multiple turkey farms? 
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Network Flows

• Create a single source, with infinite capacity 
edges connected to sources
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Network Flows

• What if each farm only has a limited number of turkeys?

• What if the FDA will catch you if you route too many turkeys 
through particular some nodes?

• What if turkeys need to visit processing plants before they get to 
people?

• What if each plant can only handle a limited number of tourist 
turkeys?

• What if you need to make a profit?
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One More Flow Definition

• We can talk about the flow from a set of 
vertices to another set, instead of just from 
one vertex to another:

• The only thing that counts is flow between the 
two disjoint sets of vertices


 


Xx Yy

yxfYXf ),(),(
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Network Cuts

• Intuitively, a cut separates a graph into two 
disconnected pieces

• Formally, a cut is a pair of sets (S, T):

and S and T are connected subgraphs of G 

{}


TS
TSV
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Minimum Cuts

• If we cut G into (S, T), where S contains the 
source s and T contains the sink t,

• Of all the cuts (S, T) we could find, what is the 
smallest (max) flow f(S, T) we will find?
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Cut - Example
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Min Cut - Example
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Min Cut - Example
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Coincidence?

• No, Max-flow always equals Min-cut

– If there is a cut with capacity equal to the flow, we have a maxflow:
• We can’t have a flow that’s bigger than the capacity cutting the graph!  So 

any cut puts a bound on the maxflow, and if we have an equality, then we 
must have a maximum flow.

– If we have a maxflow, then there are no augmenting paths left
• Or else we could augment the flow along that path, which would yield a 

higher total flow.

– If there are no augmenting paths, we have a cut of capacity equal to the 
maxflow

• Pick a cut (S,T) where S contains all vertices reachable in the residual graph 
from s, and T is everything else.  Then every edge from S to T must be 
saturated (or else there would be a path in the residual graph). So c(S,T) = 
f(S,T) = f(s,t) = |f| and we’re done.
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