CSE 373
Data Structures & Algorithms

Lecture 16
Disjoint Sets

11/13/2009 CSE 373 Fall 2009 -- Dan Suciu



Brief Midterm Review

 Problem 1: Heaps

 Problem 2: Hashing

 Problem 3: Sorting

— Many subquestions



Equivalence Relations

Relation R :

 For every pair of elements (a, b) inasetS, a
R b is either true or false.

e |faRbistrue, then aisrelated to b.
An equivalence relation satisfies:

1. (Reflexive)a R a

2. (Symmetric)aRbiffbRa

3. (Transitive)a Rband b R cimpliesa R c



A new question

 Which of these things are similar?

{ grapes, blackberries, plums, apples,
oranges, peaches, raspberries, lemons }

e |flimes are added to this fruit salad, and are similar
to oranges, then are they similar to grapes?

* How do you answer these questions efficiently?



Equivalence Classes

e G@Given a set of things...

{ grapes, blackberries, plums, apples, oranges, peaches,
raspberries, lemons, bananas }

e ...define the equivalence relation

All citrus fruit is related, all berries, all stone fruits, and THAT’S
IT.

e ..partition them into related subsets

{ grapes }, { blackberries, raspberries }, { oranges, lemons },
{ plums, peaches }, { apples }, { bananas }

Everything in an equivalence class is related to each other.



Determining equivalence classes

e |dea: give every equivalence class a name
— { oranges, limes, lemons } = “like-ORANGES”
— { peaches, plums } = “like-PEACHES”
— Etc.

 To answer if two fruits are related:
— FIND the name of one fruit’s e.c.
— FIND the name of the other fruit’s e.c.
— Are they the same name?

11/13/2009 CSE 373 Fall 2009 -- Dan Suciu



Building Equivalence Classes

e Start with disjoint, singleton sets:
— { apples }, { bananas }, { peaches }, ...

* As you gain information about the relation,
UNION sets that are now related:

— { peaches, plums }, { apples }, { bananas }, ...

e E.g.if peaches R limes, then we get

— { peaches, plums, limes, oranges, lemons }



Disjoint Union - Find

 Maintain a set of pairwise disjoint sets.
—{3,5,7}, {4,2,8}, {9}, {1,6}

 Each set has a unique name, one of its
members
—1{3,5,7},14,2,8}, {9}, {1,6}



Union

 Union(x,y) — take the union of two sets named
X andy
—1{3,5,7},14,2,8}, {9}, {1,6}
— Union(5,1)
{3,5,7,1,6}, {4,2,8}, {9},



Find

e Find(x) — return the name of the set
containing Xx.
—1{3,5,7,1,6}, {4,2,8}, {9},
— Find(1) =5
— Find(4) =8



ExampISe

S
{1,2,7,8,9,13,19} {1,2,7,8,9,13,19,14,20 26,27}
ﬁ {3}

4
{5) Find(8) = 7 {f;g
{6} Find(14) = 246}
{10} . {10
(11,17 Union(7,20 §1_1}1_7}
117} {12
{14,20,26,27} {15,16,21}
{15,16,21}

- {22,23,24,29,39,32
{22,23,24,29,39,32 3334,35,36)

3334,35,36}

11/13/2009 CSE 373 Fall 2009 -- Dan Suciu 11



Cute Application

 Build a random maze by erasing edges.

11/13/2009 CSE 373 Fall 2009 -- Dan Suciu

12



Cute Application

 Pick Start and End

Start

End

11/13/2009 CSE 373 Fall 2009 -- Dan Suciu

13



Cute Application

 Repeatedly pick random edges to delete.

Start

End




Desired Properties

* None of the boundary is deleted
e Every cell is reachable from every other cell.

e There are no cycles — no cell can reach itself
by a path unless it retraces some part of the
path.



11/13/2009

A Cycle

Start

K N

CSE 373 Fall 2009 -- Dan Suciu

End

16



11/13/2009

Start

A Good Solution

End

CSE 373 Fall 2009 -- Dan Suciu

17



A Hidden Tree

End




We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), ...

60 edges total.

Number the Cells

We have disjoint sets S ={ {1}, {2}, {3}, {4},... {36} }
each cell is unto itself.

Start

1

7

10

11

12

13

14

15

16

17

1¢

A4 4

19

20

21

22

23

24

25

26

27

28

29

39

31

32

33

34

35

36 End

}



Basic Algorithm

e S =set of sets of connected cells
e E =setof edges
e Maze = set of maze edges initially empty

While there is more than one setin S
pick a random edge (X,y) and remove fro
u ;= Find(x);
v ;= Find(y);
If u #v then
Union(u,V)
else
add (x,y) to Maze
All remaining members of E together with Maze form the maze




Example Step

Pick (8,14)

Start 1

11/13/2009

7

2
38

3

4

5

6

9

10

13
19

25

14
20
26

15
21

16

11

12

17

1€

)
)

22

27

28

31

32

33

34

23

24

:

29 39

35 36End °

CSE 373 Fall 2009 -- Dan Suciu

S
{1,2,7,8,9,13,19}
{3}

{4}

{5}

{6}

{10}

{11,17

{12
{14,20,26,27}
{15,16,21}

[22.23,24,29,30,32

3334,35,36}

21



Example
S

S
{1,2,7,8,9,13,19} {1,2,7,8,9,13,19,14,20 26,27}
{3} {3}

Eéi {4}

5 .

= Find@8)=7 13}

(101 Find(14) %0{1_0}

?i_lz}l_?} Union(7,20) ?i_lz}l_?}

{14,20,26,27} {15,16,21}

{15,16,21}

- {22,23,24,29,39,32
{22,23,24,29,39,32 3334,35,36)

3334,35,36}

11/13/2009 CSE 373 Fall 2009 -- Dan Suciu 22



Pick (19,20)

Example

Start 1

7
13
19

25

2
38
14
20
26

3

9

10

15
21

16

11| 12
17 1¢

22

27

28

31

32

33

34

23 24

29 39'

35 36End

S

{1,2,7,8,9,13,19
14,20,26,27}

{3}

{4}

{5}

{6}

{10}

{11,17

{12

{15,16,21}

[22,23,24,29,39,32
3334,35,36}



Example at the End

Start 1

.
13
19

25

2
38
14
20
26

3

4

5 6

9 10 11|12

15
21

16

17 1

22

27

28

31

32

33

34

23 2
29 3
35 36End

S
{1,2,3,4,5,67,... 36}

— E
- Maze



Implementing the DS ADT

* n elements,
Total Cost of: m finds, < n-1 unions

e Target complexity: O(m+n)
i.e. O(1) amortized

* O(1) worst-case for find as well as union would
be great, but...

Known result: find and union cannot both be
done in worst-case O(1) time



Implementing the DS ADT

 QObservation: trees let us find many elements given
one root...

e |dea: if we reverse the pointers (make them point up
from child to parent), we can find a single root from
many elements...

* |dea: Use one tree for each equivalence class. The
name of the class is the tree root.



Up-Tree for DU/F

Initial state ‘ ‘ ‘ ‘ ‘ ‘ ‘
L 3
s 4

Roots are the names of each set. ‘

Intermediat
state

11/13/2009 CSE 373 Fall 2009 -- Dan Suciu

27



Find Operation

e Find(x) follow x to the root and return the root

:

Find(6) = 7




Union Operation

e Union(i,j) - assuming i and j roots, point i to j.

ﬁ ° Union(1,7)
e 4
6




Simple Implementation

e Array of indices

Up[x] = 0 means

/ X IS a root.

S
3

6
0

o

up

o g




Union

Uni on(up[] : iInteger array, X,y : Integer) {
[/ precondition: x and y are roots//

Up[x] =y

}

Constant Time!




Exercise

e Design Find operator
— Recursive version
— |terative version

Find(up[] : Integer array, X : integer) : integer {
[/ precondition: X Iis in the range 1 to size//
?7?7?

}




11/13/2009

A Bad Case

{ Union(2,3
} " ‘ :

2 )
{ /,‘ Union(n-1,n)

}

@ Find(1) n steps!!

o

Union(1,2)

CSE 373 Fall 2009 -- Dan Suciu

33



Now this doesn’t look good ®

Can we do better? Yes!

1.

2.

Improve union so that find only takes ©(log n)
Union-by-size
Reduces complexity to ©(m log n + n)

Improve find so that it becomes even better!
Path compression
Reduces complexity to almost ©(m + n)

11/13/2009 CSE 373 Fall 2009 -- Dan Suciu

34



Weighted Union

 Weighted Union
— Always point the smaller tree to the root of the

larger tree
ﬁ W-Union(1,7)
:® 1%
2 oy

5
.



Example Again

{ Union(2,3
}\ - ® -

® |
Union(n-1,n)
{x\ Find(1) constant time

11/13/2009 CSE 373 Fall 2009 -- Dan Suciu 36

Union(1,2)



