CSE 373
Data Structures & Algorithms

Lecture 13
Sorting (l)
Chapter 7 in Weiss

11/02/2009 CSE 373 Fall 2009 -- Dan Suciu

Sorting

* |nput
— an array A of data records
— a key value in each data record

— a comparison function which imposes a consistent
ordering on the keys

e Output
— reorganize the elements of A such that
e Foranyiandj, ifi <jthen Ali] < A[j]

Consistent Ordering

The comparison function must provide a consistent ordering on the
set of possible keys

 You can compare any two keys and get back an indication
of a<b,a>Db,ora=b (trichotomy)

 The comparison functions must be consistent
— If conpar e(a, b) says a<b, then conpare(b, a) must say b>a
— |If conpar e(a, b) says a=b, then conpare(b, a) must say b=a

— |If conpar e(a, b) says a=b, then equal s(a, b) and equal s(b, a)
must say a=b

Why Sort?

e Allows binary search of an N-element array
in O(log N) time

e Allows O(1) time access to kth largest
element in the array for any k

e Sorting algorithms are among the most
frequently used algorithms in computer
science

Space

e How much space does the sorting algorithm
require in order to sort the collection of
items?

— Is copying needed?

* In-place sorting algorithms: no copying or at
most O(1) additional temp space.

— External memory sorting — data so large that does
not fit in memory

Stability

A sorting algorithm is stable if:

— Items in the input with the same value end up in
the same order as when they began.

| nput

Adams
Black
Brown
Jackson
Jones
Smith
Thompson
Washington
White
Wilson

1
2
4

2

4
1

4

2

3
3

Unstable sort
Adams
Smith
Washington
Jackson
Black
White
Wilson
Thompson
Brown
Jones

1

1

2
2

2

3

3
4

4
4

Stable Sort
Adams 1
Smith 1
Black 2
Jackson 2
Washington 2
White 3
Wilson 3
Brown 4
Jones 4
Thompson fsedgeivick]

Time
How fast is the algorithm?

. TP}A‘e[.cilefinition of a sorted array A says that for any i<j, A[i]
<Al

 This means that you need to at least check on each
element at the very minimum

— Complexity is at least:

 And you could end up checking each element against
every other element

— Complexity could be as bad as:

The big question is: How close to O(n) can you get?

Sorting: The BIg Picture

Given n comparable elements in an array, sort
them in an increasing order.

Simple Fancier Comparison Specialized Handling
algorithms algorithms lower bounc algorithms huge dat
O(n?) O(nlogn) Q(nlog n) O(n) sets
Insertion sort Heap sort Bucket sort External
Selection sort Merge sort Radix sort sorting

Bubble sort Quick sort

B W

Selection Sort: idea

~ind the smallest element, put it 1

Find the next smallest element, put it 2"d
Find the next smallest, put it 3™

And so on ...

Try it out: Selection Sort

e 31,16,54,4,2,17,6

Selection Sort: Code

void SelectionSort (Array a[0..n-1]) {
for (1=0; i<n; ++i) {
| = Find i ndex of
smal l est entry in afi..n-1]

Swap(ali],a[]])

Runtime:
WOrst case
best case
average case

11

Bubble Sort Idea

 Take a pass through the array

— If neighboring elements are out of order, swap
them.

* Take passes until no swaps needed.

Try it out: Bubble Sort

e 31,16,54,4,2,17,6

Bubble Sort: Code

voi d Bubbl eSort (Array a[0..n-1]) {
swapPerforned = 1

whi |l e (swapPerfornmed) {
swapPerforned = 0

for (i=0; i<n-1;71T++) {

if (a[i+1] < a[i]) {

Swap(a[i],a[1+1])

swapPerforned = 1

Can we
decrease
this ?

1 Runtime:
} worst case
best case

average case

14

Bubble Sort: Code

voi d Bubbl eSort (Array a[0..n-1]) {
swapPerforned = 1
whi |l e (swapPerfornmed) {
swapPerforned = 0
for (1=0; 1 < --n; 1++) {
if (a[i+1] < a[i]) {
Swap(a[i],a[1+1])
swapPerforned = 1

Can you do even better ?

Bubble Sort: Code

voi d Bubbl eSort (Array a[0..n-1]) {

m=n-1
while (m> 0) {
|l ast Swap = 0

for (i=0; i<m i++) {
if (a[i+1] < a[i]) {
Swap(al[i],a[1+1])
| ast Swap = |
}
}

m = | ast Swap

}

Insertion Sort: Idea

1. Sort first 2 elements.
2. Insert 3™ element in order.

e (First 3 elements are now sorted.)

3. Insert 4t element in order

e (First 4 elements are now sorted.)

4. And so on...

How to do the insertion?

Suppose my sequence is:
16, 31,54, 78,32,17,6

And I've already sorted up to 78. How to insert 327

Example: Insertion Sort

R
20 3|18 [1 101122318 |15 |16 |17 | 14
K
2 1 31 71| 8 1012123118 15|16 |17 |14
T\
21 31 7| 8 10112118 (23|15 | 16|17 | 14
> 4
2 131718 1012181152316 |17 14
¥ Y
2 1 31 7|8 1011211518 (23116 |17 |14
(R
21 3|1 7| 8 1011211518 |16 | 23 |17 | 14
R
2 131718 1011211516 18| 23|17 | 14

19

Example: Insertion Sort

¥ X
2317181911012 15]|16c |18 |17 23|14
¥ X
2317181911012 /15]|16c|17|168|23|14
¥ Y
23171819 110(12|15|160 (17|18 [14]23
K X
2317189 10(12|15|16c (17|14 18|23
F X
23171819 110(12|15|10c 14|17 |18]|23
¥ X
2317189 10(12|15|14 16|17 |18]|23
203171819]10[(12|14|15]16|17|18]|23

20

Try it out: Insertion sort

e 31,16,54,4,2,17,6

Insertion Sort: Code

void InsertionSort (Array a[0..n-1]) {
for (i=1; i<n; i++) {
for (j=i; j>0; j--) {
It (a[j] < a[)-1])
Swap(al[)],a[]-1])

el se
br eak
}
} Runtime:
WOrst case
Note: can instead move the best case
“*hole” to minimize copying, average case

as with a binary heap.

22

Runtime:

Sort with AVL Tree

23

Try it out: Sort with AVL Tree

e 31,16,54,4,2,17,6

Runtime:

HeapSort

25

HeapSort

87
23 44 756

13 18
801 57

25

(A5))8 13 18 23 27

Shove all elements into a priority queue,
take them out smallest to largest.

Runtime:

Try it out: HeapSort

e 31,16,54,4,2,17,6

In Place HeapSort

1. Build Heap

2. Repeat:

— DeleteMax and place it on the last leaf

Note: array entries are numbered 1..n |

1 2 3 4

HeapSort: Step 1

private void buildHeap(int a[], int n) {
for(inti=n/2;i>0;i-){
percolateDown(i, a[i]);

| e
} Lecture 8

Note: need to place the MAXIMUM element on the root

HeapSort: Step 2

private void sort(int a[], int n) {
buildHeap(a, n);
while (n>0) {
a[n--] = a[1];
DeleteMax(a, n);

} e
} Lecture 7

