
CSE 373

Data Structures & AlgorithmsData Structures & Algorithms

Lecture 13

Sorting (I)

Chapter 7 in Weiss

11/02/2009 CSE 373 Fall 2009 -- Dan Suciu 1

Sorting

• Input

– an array A of data records

– a key value in each data record

– a comparison function which imposes a consistent

2

– a comparison function which imposes a consistent

ordering on the keys

• Output

– reorganize the elements of A such that

• For any i and j, if i < j then A[i] ≤ A[j]

Consistent Ordering

The comparison function must provide a consistent ordering on the
set of possible keys

• You can compare any two keys and get back an indication
of a < b, a > b, or a = b (trichotomy)

3

of a < b, a > b, or a = b (trichotomy)

• The comparison functions must be consistent

– If compare(a,b) says a<b, then compare(b,a) must say b>a

– If compare(a,b) says a=b, then compare(b,a) must say b=a

– If compare(a,b) says a=b, then equals(a,b) and equals(b,a)
must say a=b

Why Sort?

• Allows binary search of an N-element array

in O(log N) time

• Allows O(1) time access to kth largest

4

element in the array for any k

• Sorting algorithms are among the most

frequently used algorithms in computer

science

Space

• How much space does the sorting algorithm

require in order to sort the collection of

items?

– Is copying needed?

5

– Is copying needed?

• In-place sorting algorithms: no copying or at

most O(1) additional temp space.

– External memory sorting – data so large that does

not fit in memory

Stability

A sorting algorithm is stable if:

– Items in the input with the same value end up in

the same order as when they began.

Input
Adams 1

Unstable sort
Adams 1

Stable Sort
Adams 1

6

Black 2
Brown 4
Jackson 2
Jones 4
Smith 1
Thompson 4
Washington 2
White 3
Wilson 3

Smith 1
Washington 2
Jackson 2
Black 2
White 3
Wilson 3
Thompson 4
Brown 4
Jones 4

Smith 1
Black 2
Jackson 2
Washington 2
White 3
Wilson 3
Brown 4
Jones 4
Thompson 4[Sedgewick]

Time
How fast is the algorithm?

• The definition of a sorted array A says that for any i<j, A[i]
< A[j]

• This means that you need to at least check on each
element at the very minimum

7

• This means that you need to at least check on each
element at the very minimum
– Complexity is at least:

• And you could end up checking each element against
every other element
– Complexity could be as bad as:

The big question is: How close to O(n) can you get?

Sorting: The Big Picture

Given n comparable elements in an array, sort
them in an increasing order.

Simple
algorithms:

Fancier
algorithms:

Comparison
lower bound:

Specialized
algorithms:

Handling
huge data

8

algorithms:
O(n2)

algorithms:
O(n log n)

lower bound:
Ω(n log n)

algorithms:
O(n)

huge data
sets

Insertion sort
Selection sort
Bubble sort

Heap sort
Merge sort
Quick sort
…

Bucket sort
Radix sort

External
sorting

Selection Sort: idea

1. Find the smallest element, put it 1st

2. Find the next smallest element, put it 2nd

3. Find the next smallest, put it 3rd

4. And so on …

9

4. And so on …

Try it out: Selection Sort

• 31, 16, 54, 4, 2, 17, 6

10

Selection Sort: Code

void SelectionSort (Array a[0..n-1]) {
for (i=0; i<n; ++i) {

j = Find index of
smallest entry in a[i..n-1]

11

Swap(a[i],a[j])
}

}

Runtime:
worst case :
best case :
average case :

Bubble Sort Idea

• Take a pass through the array

– If neighboring elements are out of order, swap

them.

• Take passes until no swaps needed.

12

• Take passes until no swaps needed.

Try it out: Bubble Sort

• 31, 16, 54, 4, 2, 17, 6

13

Bubble Sort: Code

void BubbleSort (Array a[0..n-1]) {
swapPerformed = 1
while (swapPerformed) {

swapPerformed = 0
for (i=0; i<n-1; i++) {

if (a[i+1] < a[i]) {

Can we

decrease

this ?

14

if (a[i+1] < a[i]) {
Swap(a[i],a[i+1])
swapPerformed = 1

}
}

}
}

Runtime:
worst case :
best case :
average case :

Bubble Sort: Code

void BubbleSort (Array a[0..n-1]) {
swapPerformed = 1
while (swapPerformed) {

swapPerformed = 0
for (i=0; i < --n; i++) {

if (a[i+1] < a[i]) {

Why

15

if (a[i+1] < a[i]) {
Swap(a[i],a[i+1])
swapPerformed = 1

}
}

}
}

Can you do even better ?

Bubble Sort: Code

void BubbleSort (Array a[0..n-1]) {
m = n-1
while (m > 0) {

lastSwap = 0
for (i=0; i<m; i++) {

if (a[i+1] < a[i]) {

16

if (a[i+1] < a[i]) {
Swap(a[i],a[i+1])
lastSwap = i

}
}
m = lastSwap

}
}

Insertion Sort: Idea

1. Sort first 2 elements.

2. Insert 3rd element in order.

• (First 3 elements are now sorted.)

3. Insert 4th element in order

17

3. Insert 4th element in order

• (First 4 elements are now sorted.)

4. And so on…

How to do the insertion?

Suppose my sequence is:

16, 31, 54, 78, 32, 17, 6

18

And I’ve already sorted up to 78. How to insert 32?

Example: Insertion Sort

19

Example: Insertion Sort

20

Try it out: Insertion sort

• 31, 16, 54, 4, 2, 17, 6

21

Insertion Sort: Code

void InsertionSort (Array a[0..n-1]) {
for (i=1; i<n; i++) {

for (j=i; j>0; j--) {
if (a[j] < a[j-1])

Swap(a[j],a[j-1])
else

22

else
break

}

}
Runtime:

worst case :
best case :
average case :

Note: can instead move the
“hole” to minimize copying,
as with a binary heap.

Sort with AVL Tree

23

Runtime:

Try it out: Sort with AVL Tree

• 31, 16, 54, 4, 2, 17, 6

24

HeapSort

25

Runtime:

HeapSort

756

27

18
801

35

13

23 44
87

26

8 13 18 23 27

Shove all elements into a priority queue,
take them out smallest to largest.

Runtime:

Try it out: HeapSort

• 31, 16, 54, 4, 2, 17, 6

27

In Place HeapSort

1. Build Heap

2. Repeat:

– DeleteMax and place it on the last leaf– DeleteMax and place it on the last leaf

Note: array entries are numbered 1..n !

11/02/2009 CSE 373 Fall 2009 -- Dan Suciu 28

1 2 3 4 n

HeapSort: Step 1

private void buildHeap(int a[], int n) {

for (int i = n/2; i > 0; i--) {

percolateDown(i, a[i]);

11/02/2009 CSE 373 Fall 2009 -- Dan Suciu 29

}

} Lecture 8

Note: need to place the MAXIMUM element on the root

HeapSort: Step 2

private void sort(int a[], int n) {

buildHeap(a, n);

while (n > 0) {

11/02/2009 CSE 373 Fall 2009 -- Dan Suciu 30

a[n--] = a[1];

DeleteMax(a, n);

}

} Lecture 7

