CSE 373 Data Structures & Algorithms

Lecture 09
Binary Heaps (Part II)

The Midterm

• Friday, October 23, 12:30, in class

Closed books, closed notes

- Topics covered:
 - Asymptotic complexity, Big-O, stacks, queues, trees, AVL trees, B trees

Six Questions on the Midterm

- 1. Compute asymptotic complexities of programs
- 2. Write programs with better asymptotic complexities
- 3. Big O notation basics
- 4. Stacks and Queues
- 5. Trees: general concepts
- 6. Search trees (AVL, B): insertion, deletion

Speed and familiarity with the material are critical

Building a Heap

 At every point, the new item may need to percolate all the way through the heap

 Adding the items one at a time is O(n log n) in the worst case (what is the worst case?)

Today we get clever and do it in O(n)

BuildHeap: Floyd's Method

Add elements arbitrarily to form a complete tree.

Pretend it's a heap and fix the heap-order property!

Buildheap pseudocode

```
private void buildHeap() {
  for ( int i = currentSize/2; i > 0; i-- ) {
    percolateDown( i );
  }
}
```

BuildHeap: Floyd's Method

Finally...

Note they're not the same

But that doesn't matter, they're both heaps

Facts about Heaps

Observations:

- Inserts are at least as common as deleteMins
- Finding a child/parent index is a multiply/divide by two
- Each percolate step looks at only two new nodes
 - Operations jump widely through the heap

Realities:

- Division/multiplication by powers of two are equally fast
- With huge data sets, disk accesses dominate
- Looking at only two new pieces of data: bad for cache!

Extension: *d*-Heaps

Each node has d children

Still representable by array

- Good choices for d:
 - choose a power of two
 - fit one set of children in a cache line/memory page/disk block

How does height compare to bin heap? (less)

This example has height 2, vs. 3 for bin

1 2 7 3 4 8 5 12 11 10 6 9

Operations on *d*-Heap

• Insert: runtime =

depth of tree decreases, O(log_d n) worst

deleteMin: runtime =

percolateDown requires comparison to find min, O(d log_d n), worst/ave

Does this help insert or deleteMin more?