CSE 373
Data Structures & Algorithms

Lecture 06
AVL Trees
Balanced BST

Observation
- BST: the shallower the better!
- For a BST with n nodes
 - Average height is $O(\log n)$
 - Worst case height is $O(n)$
- Simple cases such as insert(1, 2, 3, ..., n) lead to the worst case scenario: height $O(n)$

Solution: Require a **Balance Condition** that
1. ensures depth is $O(\log n)$ – strong enough!
2. is easy to maintain – not too strong!
The AVL Tree Data Structure

An AVL tree is:

1. A binary search tree
2. Heights of left and right subtrees of every node differ by at most 1
Recursive Height Calculation

Recall: height is max number of edges from root to a leaf

How do we compute height at A?

Note: height(null) = -1
AVL Tree?
AVL Tree?
An AVL Tree has Height $O(\log n)$

Proof Let $S(h)$ be the min # of nodes in an AVL tree of height h

Claim: $S(h) = S(h-1) + S(h-2) + 1$

Solution of recurrence: $S(h) = O(2^h)$
(like Fibonacci numbers)
Testing the Balance Property

We need to be able to:

1. Track Balance
2. Detect Imbalance
3. Restore Balance

NULL has a height of **−1**
An AVL Tree

Track height at all times.
AVL trees: find, insert, delete

• **AVL find:**
 – Same as BST find.

• **AVL insert:**
 – Same as BST insert, *except* you need to check your balance and may need to “fix” the AVL tree after the insert.

• **AVL delete:**
 – We’re not going to talk about it, but same basic idea. Delete it, check your balance, and fix it.
Bad Case #1

Insert(6)
Insert(3)
Insert(1)
Fix: Apply Single Rotation

AVL Property violated at this node (x)

Intuition: 3 must become root

Single Rotation:
1. Rotate between x and child
Bad Case #2

Insert(1)
Insert(6)
Insert(3)
Single Rotation Does Not Work

AVL Property violated at this node (x)

It’s a BST, but it’s unbalanced

Simple illustration
Fix: Apply Double Rotation

AVL Property violated at this node (x)

Double Rotation
1. Rotate between x’s child and grandchild
2. Rotate between x and x’s new child

Intuition: 3 must become root

Simple illustration
AVL tree insert

1. Find spot for new key
2. Hang new node there with this key
3. Search back up the path for imbalance
4. If there is an imbalance:
 Case #1: Perform single rotation and exit (zig-zig)
 Case #2: Perform double rotation and exit (zig-zag)

Both rotations keep the subtree height unchanged. Hence only one rotation is sufficient!
Case #1: Single Rotation (Zig-zig)

\[X < b < Y < a < Z \]

\[
\begin{array}{c}
\text{b} \\
\text{h+1} \\
\text{h+2} \\
\text{X} \\
\text{h} \\
\text{Y} \\
\text{h} \\
\text{Z} \\
\end{array}
\]

Single rotation
Single rotation example
Single rotation example
Single rotation example
Let’s break subtree Y into pieces:

Insert on left child’s right (at U or V)
Case #2: Double Rotation (Zig-zag)

Let’s break subtree Y into pieces:

Insert on left child’s right (at U or V)
Case #2: Double Rotation (Zig-zag)

Let’s break subtree Y into pieces:

Insert on left child’s right (at U or V)
Can also do this in two rotations

\[X < b < U < c < V < a < Z \]

First rotation
Second rotation
Double rotation example
Case #3: Zag-zig

Double rotation
Case #4: Zag-zag

Single rotation
Recap of AVL tree insert

Let \(x \) be the node where an imbalance occurs.

Four cases to consider. The insertion is in the

1. left subtree of the left child of \(x \). zig-zag
2. right subtree of the left child of \(x \). zig-zig
3. left subtree of the right child of \(x \). zag-zig
4. right subtree of the right child of \(x \). zag-zag

Idea: Cases 1 & 4 are solved by a single rotation.
Cases 2 & 3 are solved by a double rotation.
AVL complexity

What is the worst case complexity of a find?

$O(\log n)$

What is the worst case complexity of an insert?

$O(\log n)$

What is the worst case complexity of buildTree?

$O(n \log n)$