CSE 373
Data Structures & Algorithms

Lecture 05
Trees: BST
(Weiss 4.1, 4.2, 4.3)

10/10/2009 CSE 373 Fall 2009 -- Dan Suciu

Announcements

Homework 2

e Posted

 Due next Friday

e Turn-in in class OR drop box

Di-Graphs (Directed Graphs)

Nodes: A,B,...
Edges: A28, ...

Paths from A to E:
A,B,E
A,B,D,E
A,B,FA,B,FA,B,E
Cycle: A,B,F A
Lengh of a path = # of edges

What is a “tree” ?

* “Atreeis agraph such that...”

— How would you define a tree ?

Directed Acyclic Graph (DAG)

Definition: A DAG is a
graph without cycles

Not a tree yet...

Trees

e Atreeisagraph with a
distinguished node A
called root such that for
any other node X, there
exists a unique path from
Ato X

e See book for:
children, parent, sibling,
leaf, depth, height

Trees

A recursive definition:

e A tree consists of a node
(called the root) together
with O or more (sub)trees
T, ..., T,

10/10/2009 CSE 373 Fall 2009 -- Dan Suciu 7

Trees

Please read these definitions in the book:

e Parent, children, leaves

e Path, length of a path (= # of edges)

e Depth of a node n (length of path root—>n)

* Height of a node n (largest length n—=>leaf)

 Height of the tree

Tree Calculations Example

How high is this tree?

height(B) = 1
height(C) = 4

so height(A) =5

Quiz

e |f atree has n nodes, how many edges does it
have ?

e |f atree has n nodes, how many leaves can it
have ?

Binary Trees

Recursive definition

 Abinary treeis
— Either an empty tree

— Or a node plus a left
(sub)tree and a right

(sub)tree @
* Representation:
Data
left right

pointer| pointer

Binary Tree: Representation

A

left
oint

e‘L)right
ointer

—

B

IefteLright
ointepointe

=

D

IefteLrlght
ointepointe

=

|

| J

\

™

C

IefteLright
ointepointe

=

/

E

IefteLrlght
ointepointe

—:

F

left
oint

e‘L)rlght
ointer

R

D)

(B)

Subtle Distinction

If a node has a single child we distinguish between
the case when it is a left child and when it is a right child

(& & ®
E E ®

Left child only Right child only Not a “binary” tree

Binary Tree: Special Cases

A (&) (A A
4}
OE @@G@ C

H)

Complete Tree Perfect Tree “List” Tree

Every level,except
possibly the last, Full Tree

Is completely filled, Every non-leaf Fyll+complete

and all nodes ar .
o ., .has two _children
as'farieft as possible.

Tree Traversals

An expression tree:
A traversal is an order for

visiting all the nodes of a tree ()

) &
Four types:

e Pre-order Root, left-subtree, right-subtree @ @
e In-order: Left-subtree, root, right-subtree

e Post-order: Lef- subtree, right-subtree, root

e Breadth-first: left-right, top-down

Inorder Traversal

vol d traverse(BNode t){
I f (t !'= NULL)
traverse (t.left);
process t. el enent;
traverse (t.right);

Tree Traversals

e Preorder: Q
ABDECFGIJH
(B) (©

 |norder:

DBEAIGJFHC D) ¢ (F

e Postorder:
DEBIJGHECA &) O

ABCDEFGHIJ
A binary tree iompletaf and only if all nodes in breadth-first
order are present

Quiz

e |f a binary tree has n nodes, what can its
height be ?

e |f a binary tree has n nodes, how many leaves
can it have ?

e |f the binary tree is full and has n nodes, how
many leaves does it have ?

ADTs Seen So Far

e Stack
—push, pop, top

e Queue

—enqueue, dequeue, front

The Dictionary ADT (aka Map ADT)

e Data: Insertjoe55, “Joe Doej
> | Key Value
— a set of
: joe55 “Joe Doe”
(key, value) pairs Jo¢ oe Foe
ericmé6 “Eric McCambridge”

find(ericme)
) stemcel “Josh Barr”

ericmo

o Operations: Eric McCambridge

— Insert (key, value)

— Find (key) We will tend to emphasize the keys,

don' forget about the stored values
— Remove (key)

10/10/2009 CSE 373 Fall 2009 -- Dan Suciu 20

A Modest Few Uses

Sets

Dictionaries

Networks : Router tables
Operating systems : Page tables
Compilers : Symbol tables

Anytime you want to store information
according to some key and be able to
efficiently retrieve it

Probably the most widely used ADT!

Implementation

Insert Find Delete

Unsorted linked
lists

Unsorted array

Sorted array

What are the asymptotic running times ?

Implementation

Insert Find Delete
Unsorted
linked lists O(1) O(n) O(n)
Unsorted
array 0(1) O(n) O(n)
sorted | o(m)+n) | O(logn) | O(log(n)+n)
array 5 5 5

What limits the performance ?

Binary Search Tree Data Structure

A Binary Search Tree (BST) is a
binary tree with the following
ordering property:

 For every node n with key k:

— all keys in left subtree are smaII 68) (QC
than k

— all keys in the right subtree larger 4 @O@
than k

Comparison, equality testing

Example and Counter-Example

All children must

Not binary obey order

BINARY SEARCH TREE

BINARY SEARCH TREE

10/10/2009 CSE 373 Fall 2009 -- Dan Suciu 25

Find in BST, Recursive

Node Fi nd(Object key,
Node root) {
| f (root == NULL)
return NULL;

| f (key < root. key)
return Find(key,root.left);
else if (key > root. key)
return Find(key,root.right);
el se
return root;

Runtime:

®(depth) =6(n) worst,®(log n) avg

Find in BST, Iterative

Node Fi nd(Object key, Node root)

{
while (root !'= NULL &&

root.key !'= key) { If
(key < root. key)

root = root.|eft:
el se
root = root.right;

}

return root,;

}

Runtime: same as before!

Insert in BST

Insert(13)
Insert(8)
Insert(31)

Insertions happen only
at the leaves — easy!

Runtime:

O(depth) = Of) worst, O(logn) avg

The Height of a BST

 Important question: if a BST has n nodes, what
is its height ?
— Best case: O(log n)
— Worst case: O(n)

e Simpler question: if we insert n keys into an
empty BST, what is its height ?

Insertions Only

e Suppose keys 1, 2, 3,4,5,6, 7,8, 9 are inserted into an
initially empty BST.
Runtime depends on the order!

— in given order

O(n?)

— in reverse order

O(n?)

— median first, then left median, right median, etc.

5,3,7,2,1, 6,8, 9 bettarlogn

10/10/2009 CSE 373 Fall 2009 -- Dan Suciu

30

BuildTree for BST

Insert n keys into an empty BST = “bulk insertion”
e Example: 1, 2,3,4,5,6,7,8
e What we if could somehow re-arrange them

— median first, then left median, right median, etc.
-5,3,7,2,1,4,8,6,9
(5)

— What tree does that give us? © 0
— What big-O runtime? () (2 (6) (8)
O(N log N) @ @

The Height of a BST after Insertions
Only

e Bulk insertion of n keys = height = O(log n)

 Regular insertion of n keys:
— Worst case O(n)

— Best case O(log n)
— Average case O(log n) READ THE BOOK

e Find minimum

e Find maximum

FindMin/FindMax

Deletion in BST

Why might deletion be harder than insertion?

10/10/2009 cse 273 Fall 2000 ‘Maysbe in middle, instead of at leaf

Lazy Deletion

Instead of physically deleting nodes,
just mark them as deleted

+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag

— extra memory for deleted flag
— many lazy deletions slow finds

— some operations may have to be
modified (e.g., min and max)

10/10/2009 CSE 373 Fall 2009 -- Dan Suciu 35

Non-lazy Deletion

e Removing an item disrupts the tree
structure.

e Basicidea: find the node that is to be
removed. Then “fix” the tree so that it is
still a binary search tree.

e Three cases:
— node has no children (leaf node)
— node has one child

— node has two children

Non-lazy Deletion — The Leaf Case

Delete(L7)

Easy — prune

Deletion — The One Child Case

Delete(L5)

Pull up child — will this always work?

Deletion — The Two Child Case

Delete{)
@ A value guaranteed to be
between the two subtrees!
_ - succfrom right subtree
What can we replacewith? - predfrom left subtree

How long do these operations take? (find, insert, delete)

Deletion — The Two Child Case

Idea: Replace the deleted node with a value guaranteed to
be between the two child subtrees!

Options:
e succ from right subtree: findMin(t.right)

e pred from left subtree : findMax(t.left)

Now delete the original node containing succ or pred

e Leaf or one child case — easy!

Why leaf or one child case?

Finally...

Original node containing
7/ gets deleted

Binary Trees: Some Numbers

Recall: height of a tree = longest path from root
to leaf.

For binary tree of height h:

— max # of leaves: 2h

— max # of nodes: 2(h+1)_1
— min # of leaves: 1

— min # of nodes: h+1

We’re not going to do better than log(n) height,
10/10/2009 and we need something to keep us away from n

