
CSE 373

Data Structures & AlgorithmsData Structures & Algorithms

Lecture 05

Trees: BST

(Weiss 4.1, 4.2, 4.3)

10/10/2009 CSE 373 Fall 2009 -- Dan Suciu 1

Announcements

Homework 2

• Posted

• Due next Friday

• Turn-in in class OR drop box• Turn-in in class OR drop box

10/10/2009 CSE 373 Fall 2009 -- Dan Suciu 2

Di-Graphs (Directed Graphs)

• Nodes: A,B,…

• Edges: A�B, …

• Paths from A to E:

A

B F

C

• Paths from A to E:

A,B,E

A,B,D,E

A,B,F,A,B,F,A,B,E

• Cycle: A,B,F,A

• Lengh of a path = # of edges

10/10/2009 CSE 373 Fall 2009 -- Dan Suciu 3

ED

G

What is a “tree” ?

• “A tree is a graph such that….”

– How would you define a tree ?

10/10/2009 CSE 373 Fall 2009 -- Dan Suciu 4

Directed Acyclic Graph (DAG)

Definition: A DAG is a

graph without cycles
A

B F

C

Not a tree yet…

10/10/2009 CSE 373 Fall 2009 -- Dan Suciu 5

ED

G

Trees

• A tree is a graph with a

distinguished node A

called root such that for

any other node X, there

A

E

B

D F

C

Gany other node X, there

exists a unique path from

A to X

• See book for:

children, parent, sibling,

leaf, depth, height

10/10/2009 6

IH

KJ L

M

L

N

CSE 373 Fall 2009 -- Dan Suciu

Trees

A recursive definition:

• A tree consists of a node

(called the root) together

with 0 or more (sub)treeswith 0 or more (sub)trees

T1, …, Tk

10/10/2009 7CSE 373 Fall 2009 -- Dan Suciu

Trees

Please read these definitions in the book:

• Parent, children, leaves

• Path, length of a path (= # of edges)

• Depth of a node n (length of path root�n)• Depth of a node n (length of path root�n)

• Height of a node n (largest length n�leaf)

• Height of the tree

10/10/2009 CSE 373 Fall 2009 -- Dan Suciu 8

Tree Calculations Example

A

E

B

D F

C

G

How high is this tree?

10/10/2009 9

ED F G

IH

KJ L

M

L

N

height(B) = 1
height(C) = 4

so height(A) = 5

CSE 373 Fall 2009 -- Dan Suciu

Quiz

• If a tree has n nodes, how many edges does it

have ?

• If a tree has n nodes, how many leaves can it • If a tree has n nodes, how many leaves can it

have ?

10/10/2009 CSE 373 Fall 2009 -- Dan Suciu 10

Binary Trees
Recursive definition

• A binary tree is

– Either an empty tree

– Or a node plus a left
(sub)tree and a right

A

B C
(sub)tree and a right
(sub)tree

• Representation:

D E F

HG

JI

Data

right
pointer

left
pointer

10/10/2009 11CSE 373 Fall 2009 -- Dan Suciu

Binary Tree: Representation

A
right

pointer
left

pointer

A

B

D E

C

F
B

right left

C
right left D E Fright

pointer
left

pointer
right

pointer
left

pointer

D
right

pointer
left

pointer

E
right

pointer
left

pointer

F
right

pointer
left

pointer

10/10/2009 12CSE 373 Fall 2009 -- Dan Suciu

Subtle Distinction

If a node has a single child we distinguish between
the case when it is a left child and when it is a right child

A A A

10/10/2009 CSE 373 Fall 2009 -- Dan Suciu 13

A

B

A

B

A

B

Left child only Right child only Not a “binary” tree

Binary Tree: Special Cases

A

B C

A

B C

A

B C

A

BB

D E

C

GF

IH

D E F

Full Tree

Complete Tree

B

D E

C

GF

Perfect Tree

C

“List” Tree

Every non-leaf
has two children

Full+complete

Every level,except
possibly the last,
is completely filled,
and all nodes ar
as far left as possible.10/10/2009 14CSE 373 Fall 2009 -- Dan Suciu

Tree Traversals

A traversal is an order for

visiting all the nodes of a tree +

* 5

An expression tree:

Four types:

• Pre-order Root, left-subtree, right-subtree

• In-order: Left-subtree, root, right-subtree

• Post-order: Lef- subtree, right-subtree, root

• Breadth-first: left-right, top-down

*

2 4

5

10/10/2009 15CSE 373 Fall 2009 -- Dan Suciu

Inorder Traversal

void traverse(BNode t){

if (t != NULL)

traverse (t.left);traverse (t.left);

process t.element;

traverse (t.right);

}

10/10/2009 16CSE 373 Fall 2009 -- Dan Suciu

Tree Traversals

• Preorder:

ABDECFGIJH

• Inorder:

DBEAIGJFHC

A

B

D E

C

FDBEAIGJFHC

• Postorder:

DEBIJGHFCA

• Breadth-first:

ABCDEFGHIJ

10/10/2009 CSE 373 Fall 2009 -- Dan Suciu 17

D E F

HG

JI

A binary tree is completeif and only if all nodes in breadth-first
order are present

Quiz

• If a binary tree has n nodes, what can its

height be ?

• If a binary tree has n nodes, how many leaves • If a binary tree has n nodes, how many leaves

can it have ?

• If the binary tree is full and has n nodes, how

many leaves does it have ?

10/10/2009 CSE 373 Fall 2009 -- Dan Suciu 18

ADTs Seen So Far

• Stack

– push, pop, top

• Queue

– enqueue, dequeue, front

10/10/2009 19CSE 373 Fall 2009 -- Dan Suciu

The Dictionary ADT (aka Map ADT)

• Data:

– a set of

(key, value) pairs

insert(joe55, “Joe Doe”)

find(ericm6)

Key Value

joe55 “Joe Doe”

ericm6 “Eric McCambridge”

• Operations:

– Insert (key, value)

– Find (key)

– Remove (key)

find(ericm6)

ericm6
“Eric McCambridge”

We will tend to emphasize the keys,
don’t forget about the stored values

10/10/2009 20CSE 373 Fall 2009 -- Dan Suciu

stemcel “Josh Barr”

. . .

A Modest Few Uses

• Sets

• Dictionaries

• Networks : Router tables

• Operating systems : Page tables• Operating systems : Page tables

• Compilers : Symbol tables

• Anytime you want to store information
according to some key and be able to
efficiently retrieve it

Probably the most widely used ADT!
10/10/2009 21CSE 373 Fall 2009 -- Dan Suciu

Implementation

Insert Find Delete

Unsorted linked

lists

10/10/2009 CSE 373 Fall 2009 -- Dan Suciu 22

lists

Unsorted array

Sorted array

What are the asymptotic running times ?

Implementation

Insert Find Delete

Unsorted

linked lists
O(1) O(n) O(n)

Unsorted

10/10/2009 CSE 373 Fall 2009 -- Dan Suciu 23

Unsorted

array
O(1) O(n) O(n)

Sorted

array
O(log(n)+n) O(log n) O(log(n)+n)

What limits the performance ?

Binary Search Tree Data Structure

A Binary Search Tree (BST) is a
binary tree with the following
ordering property:

• For every node n with key k:

115

8

• For every node n with key k:

– all keys in left subtree are smaller
than k

– all keys in the right subtree larger
than k

10/10/2009 24

4

121062

14

13

7 9

Comparison, equality testing

CSE 373 Fall 2009 -- Dan Suciu

Example and Counter-Example

84

5

115

8
All children must

obey order
Not binary

10/10/2009 25

3

1171

4

181062

20

21BINARY SEARCH TREE
NOT A

BINARY SEARCH TREE

7

15

CSE 373 Fall 2009 -- Dan Suciu

Find in BST, Recursive

Node Find(Object key,

Node root) {

if (root == NULL)

return NULL;

if (key < root.key)
2092

155

10

if (key < root.key)

return Find(key,root.left);

else if (key > root.key)

return Find(key,root.right);

else

return root;

}

10/10/2009 26

2092

307 17

Runtime:

Θ(depth) = Θ(n) worst, Θ(log n) avg
CSE 373 Fall 2009 -- Dan Suciu

Find in BST, Iterative

Node Find(Object key,Node root)
{

while (root != NULL &&

root.key != key) { if
(key < root.key)

root = root.left;
155

10

root = root.left;

else

root = root.right;

}

return root;

}

10/10/2009 27

2092

307 17

Runtime: same as before!

Insert in BST

2092

155

10
Insert(13)
Insert(8)
Insert(31)

10/10/2009 28

2092

307 17

Runtime:

O(depth) = O(n) worst, O(log n) avg

Insertions happen only
at the leaves – easy!

CSE 373 Fall 2009 -- Dan Suciu

The Height of a BST

• Important question: if a BST has n nodes, what

is its height ?

– Best case: O(log n)

– Worst case: O(n)– Worst case: O(n)

• Simpler question: if we insert n keys into an

empty BST, what is its height ?

10/10/2009 CSE 373 Fall 2009 -- Dan Suciu 29

Insertions Only

• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into an

initially empty BST.

Runtime depends on the order!

– in given order

Θ(n2)
– in reverse order

– median first, then left median, right median, etc.

10/10/2009 30

Θ(n2)

Θ(n2)

5, 3, 7, 2, 1, 6, 8, 9 better: n log n

CSE 373 Fall 2009 -- Dan Suciu

BuildTree for BST
Insert n keys into an empty BST = “bulk insertion”

• Example: 1, 2, 3, 4, 5, 6, 7, 8

• What we if could somehow re-arrange them

– median first, then left median, right median, etc.

– 5, 3, 7, 2, 1, 4, 8, 6, 9– 5, 3, 7, 2, 1, 4, 8, 6, 9

– What tree does that give us?

– What big-O runtime? 842

73

5

9

6

1O(N log N)
10/10/2009 31CSE 373 Fall 2009 -- Dan Suciu

The Height of a BST after Insertions

Only

• Bulk insertion of n keys � height = O(log n)

• Regular insertion of n keys:• Regular insertion of n keys:

– Worst case O(n)

– Best case O(log n)

– Average case O(log n) READ THE BOOK

10/10/2009 CSE 373 Fall 2009 -- Dan Suciu 32

FindMin/FindMax

• Find minimum

155

10

• Find maximum

10/10/2009 33

2092

307 17

CSE 373 Fall 2009 -- Dan Suciu

Deletion in BST

2092

155

10

10/10/2009 34

2092

307 17

Why might deletion be harder than insertion?

May be in middle, instead of at leafCSE 373 Fall 2009 -- Dan Suciu

Lazy Deletion

Instead of physically deleting nodes,
just mark them as deleted

+ simpler

+ physical deletions done in batches

+ some adds just flip deleted flag

10

+ some adds just flip deleted flag

– extra memory for deleted flag

– many lazy deletions slow finds

– some operations may have to be
modified (e.g., min and max)

10/10/2009 35

2092

155

307 17

CSE 373 Fall 2009 -- Dan Suciu

Non-lazy Deletion

• Removing an item disrupts the tree

structure.

• Basic idea: find the node that is to be

removed. Then “fix” the tree so that it is

still a binary search tree.still a binary search tree.

• Three cases:

– node has no children (leaf node)

– node has one child

– node has two children

10/10/2009 36CSE 373 Fall 2009 -- Dan Suciu

Non-lazy Deletion – The Leaf Case

155

10Delete(17)

10/10/2009 37

2092

307 17

Easy – prune

CSE 373 Fall 2009 -- Dan Suciu

Deletion – The One Child Case

155

10Delete(15)

10/10/2009 38

2092

307

Pull up child – will this always work?

CSE 373 Fall 2009 -- Dan Suciu

Deletion – The Two Child Case

3092

205

10

Delete(5)

10/10/2009 39

3092

7

What can we replace 5 with?

A value guaranteed to be
between the two subtrees!
- succfrom right subtree
- predfrom left subtree

How long do these operations take? (find, insert, delete)
CSE 373 Fall 2009 -- Dan Suciu

Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to

be between the two child subtrees!

Options:

• succ from right subtree: findMin(t.right)• succ from right subtree: findMin(t.right)

• pred from left subtree : findMax(t.left)

Now delete the original node containing succ or pred

• Leaf or one child case – easy!

10/10/2009 40
Why leaf or one child case?

CSE 373 Fall 2009 -- Dan Suciu

Finally…

207

10

7 replaces 5

10/10/2009 41

3092

Original node containing
7 gets deleted

CSE 373 Fall 2009 -- Dan Suciu

Binary Trees: Some Numbers

Recall: height of a tree = longest path from root

to leaf.

For binary tree of height h:

– max # of leaves: 2h

– max # of nodes:

– min # of leaves:

– min # of nodes:

2

2(h + 1) - 1

1

h + 1
We’re not going to do better than log(n) height,
and we need something to keep us away from n10/10/2009 42

