Lecture 05
Trees: BST
(Weiss 4.1, 4.2, 4.3)
Announcements

Homework 2

• Posted
• Due next Friday
• Turn-in in class OR drop box
Di-Graphs (Directed Graphs)

- Nodes: A, B, ...
- Edges: A → B, ...

- **Paths** from A to E:
 - A, B, E
 - A, B, D, E
 - A, B, F, A, B, F, A, B, E

- **Cycle**: A, B, F, A
- **Length** of a path = # of edges
What is a “tree”?

• “A tree is a graph such that....”
 – How would you define a tree?
Directed Acyclic Graph (DAG)

Definition: A DAG is a graph without cycles

Not a tree yet...
Trees

• A tree is a graph with a distinguished node A called root such that for any other node X, there exists a unique path from A to X

• See book for: children, parent, sibling, leaf, depth, height
Trees

A recursive definition:

• A tree consists of a node (called the root) together with 0 or more (sub)trees T_1, \ldots, T_k
Trees

Please read these definitions in the book:

• Parent, children, leaves
• Path, length of a path (= # of edges)
• Depth of a node \(n \) (length of path root \(\rightarrow \) \(n \))
• Height of a node \(n \) (largest length \(n \rightarrow \) leaf)
• Height of the tree
How high is this tree?

height(B) = 1
height(C) = 4
so height(A) = 5
Quiz

• If a tree has n nodes, how many edges does it have?

• If a tree has n nodes, how many leaves can it have?
Binary Trees

Recursive definition

• A binary tree is
 – Either an empty tree
 – Or a node plus a left (sub)tree and a right (sub)tree

• Representation:

<table>
<thead>
<tr>
<th>Data</th>
<th>left pointer</th>
<th>right pointer</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>I</td>
<td>J</td>
</tr>
</tbody>
</table>

10/10/2009 CSE 373 Fall 2009 -- Dan Suciu
Binary Tree: Representation

- A
 - left: B
 - right: C
- B
 - left: D
 - right: E
- C
 - left: F
 - right: None
- D
- E
- F

Diagram:

- A
 - left: B
 - right: C
- B
 - left: D
 - right: E
- C
 - left: F
 - right: None
Subtle Distinction

If a node has a single child we distinguish between the case when it is a left child and when it is a right child.

- Left child only
- Right child only
- Not a “binary” tree
Binary Tree: Special Cases

- **Complete Tree**: Every level, except possibly the last, is completely filled, and all nodes are as far left as possible.

- **Full Tree**: Every non-leaf has two children.

- **Perfect Tree**: Full + complete.

- **“List” Tree**:
Tree Traversals

A *traversal* is an order for visiting all the nodes of a tree

Four types:

- **Pre-order**: Root, left-subtree, right-subtree
- **In-order**: Left-subtree, root, right-subtree
- **Post-order**: Left-subtree, right-subtree, root
- **Breadth-first**: left-right, top-down

An expression tree:
void traverse(BNode t){
 if (t != NULL)
 traverse (t.left);
 process t.element;
 traverse (t.right);
}
Tree Traversals

• Preorder: ABDECFGIJH
• Inorder: DBEAIGJFHC
• Postorder: DEBIJGHFCA
• Breadth-first: ABCDEFGHIJ

A binary tree is complete if and only if all nodes in breadth-first order are present
Quiz

• If a binary tree has n nodes, what can its height be?

• If a binary tree has n nodes, how many leaves can it have?

• If the binary tree is full and has n nodes, how many leaves does it have?
ADTs Seen So Far

• Stack
 — push, pop, top

• Queue
 — enqueue, dequeue, front
The Dictionary ADT (aka Map ADT)

• **Data:**
 - a set of (key, value) pairs

 insert(joe55, “Joe Doe”)

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>joe55</td>
<td>“Joe Doe”</td>
</tr>
<tr>
<td>ericm6</td>
<td>“Eric McCambridge”</td>
</tr>
<tr>
<td>stemcel</td>
<td>“Josh Barr”</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

• **Operations:**
 - Insert (key, value)
 - Find (key)
 - Remove (key)

We will tend to emphasize the keys, don’t forget about the stored values
A Modest Few Uses

• Sets
• Dictionaries
• Networks : Router tables
• Operating systems : Page tables
• Compilers : Symbol tables

• Anytime you want to store information according to some key and be able to efficiently retrieve it

Probably the most widely used ADT!
Implementation

<table>
<thead>
<tr>
<th></th>
<th>Insert</th>
<th>Find</th>
<th>Delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted linked lists</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unsorted array</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorted array</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What are the asymptotic running times?
Implementation

<table>
<thead>
<tr>
<th></th>
<th>Insert</th>
<th>Find</th>
<th>Delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted linked lists</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>Unsorted array</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>Sorted array</td>
<td>O(log(n)+n)</td>
<td>O(log n)</td>
<td>O(log(n)+n)</td>
</tr>
</tbody>
</table>

What limits the performance?
A Binary Search Tree (BST) is a binary tree with the following *ordering property*:

- For every node \(n \) with key \(k \):
 - all keys in left subtree are smaller than \(k \)
 - all keys in the right subtree larger than \(k \)
Example and Counter-Example

BINARY SEARCH TREE

Not binary

All children must obey order

NOT A
BINARY SEARCH TREE
Find in BST, Recursive

Node Find(Object key,
 Node root) {
 if (root == NULL)
 return NULL;
 if (key < root.key)
 return Find(key, root.left);
 else if (key > root.key)
 return Find(key, root.right);
 else
 return root;
}

\[\Theta(\text{depth}) = \Theta(n) \text{ worst, } \Theta(\log n) \text{ avg} \]
Find in BST, Iterative

Node Find(Object key, Node root)
{
 while (root != NULL &&
 root.key != key) {
 if (key < root.key)
 root = root.left;
 else
 root = root.right;
 }
 return root;
}
Insert in BST

Insertions happen only at the leaves – easy!

Runtime:

\[O(\text{depth}) = O(n) \text{ worst, } O(\log n) \text{ avg} \]
The Height of a BST

• Important question: if a BST has n nodes, what is its height?
 – Best case: $O(\log n)$
 – Worst case: $O(n)$

• Simpler question: if we insert n keys into an empty BST, what is its height?
Insertions Only

- Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into an initially empty BST.

 Runtime depends on the order!

 - in given order

 $\Theta(n^2)$

 - in reverse order

 $\Theta(n^2)$

 - median first, then left median, right median, etc.

5, 3, 7, 2, 1, 6, 8, 9 better: $n \log n$
BuildTree for BST

Insert \(n \) keys into an empty BST = “bulk insertion”

• Example: 1, 2, 3, 4, 5, 6, 7, 8
• What we if could somehow re-arrange them
 – median first, then left median, right median, etc.
 – 5, 3, 7, 2, 1, 4, 8, 6, 9

 – What tree does that give us?

 – What big-O runtime?

\[O(N \log N) \]
The Height of a BST after Insertions Only

• Bulk insertion of n keys \Rightarrow height = $O(\log n)$

• Regular insertion of n keys:
 – Worst case $O(n)$
 – Best case $O(\log n)$
 – Average case $O(\log n)$ READ THE BOOK
FindMin/FindMax

- Find minimum
- Find maximum
Deletion in BST

Why might deletion be harder than insertion?

May be in middle, instead of at leaf
Lazy Deletion

Instead of physically deleting nodes, just mark them as deleted

+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag

- extra memory for deleted flag
- many lazy deletions slow finds
- some operations may have to be modified (e.g., min and max)
Non-lazy Deletion

• Removing an item disrupts the tree structure.

• Basic idea: find the node that is to be removed. Then “fix” the tree so that it is still a binary search tree.

• Three cases:
 – node has no children (leaf node)
 – node has one child
 – node has two children
Non-lazy Deletion – The Leaf Case

Delete(17)

Easy – prune
Deletion – The One Child Case

Delete(15)

Pull up child – will this always work?
Deletion – The Two Child Case

Delete(5)

What can we replace 5 with?

- succ from right subtree
- pred from left subtree

How long do these operations take? (find, insert, delete)
Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees!

Options:
• *succ* from right subtree: findMin(t.right)
• *pred* from left subtree : findMax(t.left)

Now delete the original node containing *succ* or *pred*
• Leaf or one child case – easy!

Why leaf or one child case?
Finally...

7 replaces 5

Original node containing
7 gets deleted
Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf.

For binary tree of height h:

- max # of leaves: 2^h
- max # of nodes: $2^{(h + 1)} - 1$
- min # of leaves: 1
- min # of nodes: $h + 1$

We’re not going to do better than log(n) height, and we need something to keep us away from n