CSE 373
Data Structures & Algorithms
Guest Lecturer: VIBHOR RASTOGI

Lecture 03
Asymptotic Analysis
Algorithm Analysis

• Correctness:
 – Does the algorithm do what is intended.

• Performance:
 – Speed time complexity
 – Memory space complexity

• Why analyze?
Correctness

Correctness of an algorithm is established by proof. Common approaches:

- (Dis)proof by counterexample
- Proof by contradiction
- Proof by induction
 - Especially useful in recursive algorithms
Proof by Induction

• **Base Case:** The algorithm is correct for a base case or two by inspection.

• **Inductive Hypothesis (n=k):** Assume that the algorithm works correctly for the first k cases.

• **Inductive Step (n=k+1):** Given the hypothesis above, show that the k+1 case will be calculated correctly.
Recursive algorithm for \textit{sum}

- Write a \textit{recursive} function to find the sum of the first n integers stored in array v.

\begin{verbatim}
sum(int array v, int n) returns int
 if n = 0 then
 sum = 0
 else
 sum = nth number + sum of first n-1 numbers
 return sum
\end{verbatim}
Program Correctness by Induction

• Base Case:

• Inductive Hypothesis (n=k):

• Inductive Step (n=k+1):
How to measure performance?

• Empirical approach:
 – Run the program many times
 – Caveats
 • Must implement every alg you want to evaluate
 • Results may be particular to type of machine used
 • need to test on many data

• Analytical approach:
 – Count operations, come up with (upper/lower) bounds on running time
Analyzing Performance

We will focus on analyzing time complexity. First, we have some “rules” to help measure how long it takes to do things:

- **Basic operations** Constant time
- **Consecutive statements** Sum of times
- **Conditionals** Test, plus larger branch cost
- **Loops** Sum of iterations
- **Function calls** Cost of function body
- **Recursive functions** Solve recurrence relation…

Second, we will be interested in **best** and **worst** case performance.
Complexity cases

We’ll start by focusing on two cases.

Problem size N

- **Worst-case complexity**: $\text{max} \ # \text{ steps algorithm takes on “most challenging” input of size } N$

- **Best-case complexity**: $\text{min} \ # \text{ steps algorithm takes on “easiest” input of size } N$
Exercise - Searching

int ArrayContains(int array[], int n, int key){
 // Insert your algorithm here
}

What algorithm would you choose
to implement this code snippet?
Linear Search Analysis

```c
int LinearArrayContains(int array[], int n, int key) {
    for (int i = 0; i < n; i++) {
        if (array[i] == key) {
            // Found it!
            return i;
        }
    }
    return -1;
}
```

Best case:

Worst case:
Binary Search Analysis

Int BinArrayContains(int array[], int low, int high, int key)
{
 // The subarray is empty
 if(low > high) return -1;

 // Search this subarray recursively
 int mid = (high + low) / 2;
 if(key == array[mid]) {
 return mid;
 }
 else if(key < array[mid]) {
 return BinArrayContains(array, low, mid-1, key);
 }
 else {
 return BinArrayContains(array, mid+1, high, key);
 }
}

Best case:

Worst case:
Solving Recurrence Relations

• Determine the recurrence relation and base case(s).
• “Expand” the original relation to find an equivalent expression in terms of the number of expansions (k).
• Find a closed-form expression by setting k to a value which reduces the problem to a base case.
Linear Search vs Binary Search

<table>
<thead>
<tr>
<th></th>
<th>Linear Search</th>
<th>Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Case</td>
<td>4</td>
<td>5 at [middle]</td>
</tr>
<tr>
<td>Worst Case</td>
<td>3n+3</td>
<td>4 ⌈log n⌉ + 2</td>
</tr>
</tbody>
</table>
Linear search—empirical analysis

Each search = a dot.
Blue = less frequent
Red = more frequent

N (= array size)

time (# ops)
Binary search—empirical analysis

Each search = a dot.
Blue = less frequent
Red = more frequent
Empirical comparison

Gives additional information
Fast Computer vs. Slow Computer

linear search on Pentium-IV
linear search on 486

elts to be searched

10/05/2009 CSE 373 Fall 2009 -- Vibhor Rastogi
Fast Computer vs. Smart Programmer (round 1)

- linear search on Pentium-IV
- binary search on 486

Time in ms

elts to be searched
Fast Computer vs. Smart Programmer

(round 2)

linear search on Pentium-IV
binary search on 486
DEFINITION: The Big-O notation

\[T(n) = O(f(n)) \] if there exist constants \(c \) and \(n' \) such that: \(T(n) \leq c \cdot f(n) \) for all \(n \geq n' \)
Order Notation: Intuition

\[a(n) = n^3 + 2n^2 \]
\[b(n) = 100n^2 + 1000 \]

Although not yet apparent, as \(n \) gets “sufficiently large”, \(a(n) \) will be “greater than or equal to” \(b(n) \)

10/05/2009
Example

$h(n) \in O(f(n))$ iff there exist positive constants c and n_0 such that:

$$h(n) \leq c f(n) \text{ for all } n \geq n_0$$

Example:

$$100n^2 + 1000 \leq \frac{1}{2} (n^3 + 2n^2) \text{ for all } n \geq 198$$

So $b(n) \in O(a(n))$
Asymptotic Analysis

- Intuitively, to find the asymptotic runtime, throw away the constants and low-order terms
 - \(a(n) = n^3 + 2n^2 = O(n^3) \)
 - \(b(n) = 100n^2 + 1000 = O(n^2) \)

\[
T_{\text{worst}}^{LS}(n) = 3n + 3 \in O(n) \quad T_{\text{worst}}^{BS}(n) = 4\lfloor \log_2 n \rfloor + 2 \in O(\log n)
\]

Remember: the “fastest” algorithm has the slowest growing function for its runtime
Asymptotic Analysis

• Asymptotic analysis looks at the order of the running time of the algorithm
 – A valuable tool when the input gets “large”
 – Ignores the effects of different machines or different implementations of same algorithm

• Comparing worst case search examples:

\[
T_{\text{worst}}^{\text{LS}}(n) = 3n + 3 \quad \text{vs.} \quad T_{\text{worst}}^{\text{BS}}(n) = 4\lfloor \log_2 n \rfloor + 2
\]
Asymptotic Analysis

Eliminate low order terms

- \(4n + 5 \Rightarrow \)
- \(0.5 \; n \log n + 2n + 7 \Rightarrow \)
- \(n^3 + 3 \; 2^n + 8n \Rightarrow \)

Eliminate coefficients

- \(4n \Rightarrow \)
- \(0.5 \; n \log n \Rightarrow \)
- \(3 \; 2^n \Rightarrow \)
Properties of Logs

Basic:
- $A^{\log_A B} = B$
- $\log_A A =$

Independent of base:
- $\log(AB) =$
- $\log(A/B) =$
- $\log(A^B) =$
- $\log((A^B)^C) =$
Properties of Logs

\[\log_A n = \left(\frac{1}{\log_B A} \right) \log_B n \]
Another example

- Eliminate low-order terms

- Eliminate constant coefficients

\[16n^3 \log_8(10n^2) + 100n^2\]
Definition of Order Notation

• Upper bound: \(h(n) \in O(f(n)) \) Big-O “order”
 – Exist positive constants \(c \) and \(n_0 \) such that
 – \(h(n) \leq c \ f(n) \) for all \(n \geq n_0 \)

• Lower bound: \(h(n) \in \Omega(g(n)) \) Omega
 – Exist positive constants \(c \) and \(n_0 \) such that
 – \(h(n) \geq c \ g(n) \) for all \(n \geq n_0 \)
Definition of Order Notation

• Tight bound: \(h(n) \in \theta(f(n)) \) Theta
 – When both hold:
 – \(h(n) \in O(f(n)) \)
 – \(h(n) \in \Omega(f(n)) \)

• \(O(f(n)) \) defines a class (set) of functions
Thanks!

• Any questions:
 – vibhor@cs.washington.edu