
CSE373 Midterm II
Fall 2009

(Closed book, closed notes)

Name: ..

Problem Points

Q1 [20 points]

Q2 [20 points]

Q3 [15 points]

Q4 [15 points]

Q5 [30 points]

Total [100 points]

1

1 [20 points] Heaps

1. Consider a binary heap with n = 2k − 1 elements, stored in an ar-
ray a[1], ..., a[n], using the implicit representation. The heap
supports the operations insert and deleteMin, that is, the smallest
element is a[1]. For each of the statements below indicate whether
they are true or false.

(a) The largest element in the heap is a[n].

True or False ? False

(b) a[1]+a[2]+...+a[n/2] ≤ a[n/2+1]+a[n/2+2]+...+a[n]

True or False ? True

(c) The median element in the heap is either a[n/2] or a[n/2+1].

True or False ? False

(d) a[1] ≤ a[2] ≤ a[4] ≤ a[8] ≤ . . . ≤ a[2k−1]

True or False ? True

(e) The second smallest element is either a[2] or a[3].

True or False ? True

2. Show the heap after a deleteMin operation:

3

12

22 25

15

49 51

Answer:

12

22

51 25

15

49 -

2

2 [20 points] Hash Tables

1. Consider a hash table with m entries, with the following hash function:
h(x) = x mod m. For each input sequence below indicate the aymp-
totic running time for inserting all elements in the hash table assuming
the hash table uses (i) separate chaining, or (ii) linear probing. Your
answer should be in big O notation, like O(m log m) (not necessarily
a real answer). Please remember that the insert operation must check
if the key being inserted is not already in the hash table.

(a) 0, m, 2*m, ..., (m-1)*m (m elements)

i. Separate chaining: Answer: O(m2)

ii. Linear probing: Answer: O(m2)

(b) 0, 1, 2, ..., m-2, m-1 (m elements)

i. Separate chaining: Answer: O(m)

ii. Linear probing: Answer: O(m)

(c) 0, 1, 2, ..., m/2-2, m/2-1, m/2,

m, m+1, m+2, ..., 3m/2-2, 3m/2-1, 3m/2 (m elements)

i. Separate chaining: Answer: O(m)

ii. Linear probing: Answer: O(m2)

3

2. For each statement below indicate whether it is true or false. Assume
the has table has m entries.

(a) Finding an element in a separate chaining hash table with n ele-
ments can be done in O(1) worst case running time.

Answer: False

(b) If the fill factor λ = n/m is approximatively 0.8 then inserting in
a hash table using linear probing may never terminate

Answer: False

(c) The advantange of using quadratic probing over linear probing is
that quadratic probing tends to avoid primary clustering.

Answer: True

(d) If m is a prime number, the second hash function h2(x) never
returns 0, and the table has at least one empty slot, then double
hashing will always find an empty slot to insert a new element.

Answer: True

4

3 [15 points] Bubble Sort

Consider the following variant of bubble sort:

void BubbleSort (int a[n]) {

swapPerformed = true

while (swapPerformed) {

swapPerformed = false

for (i=0; i<n-1; i++) {

if (a[i+1] <= a[i]) {

Swap(a[i],a[i+1])

swapPerformed = true

}

}

}

}

The function is intended to sort the array in ascending order and to run
in time O(n2), but there is a bug in the function.

1. On the code above, show where the bug is and how to fix it. Your goal
is to make a single change in the code such that the function sorts the
array in ascending order and runs in time O(n2); you do not need to
try to do other improvements.

Answer: a[i+1] ≤ a[i] should be a[i+1] < a[i] .

2. Then, indicate what will go wrong if we don’t fix the bug, by choosing
one of the following answers. Assume that the input array a has at
least one duplicate value (a value that occurs two or more times in the
array). Circle one answer below.

• The function runs in time O(n3)

• The function sorts the array in descending order rather than as-
cending order.

• The function never terminates

• The function stops before the array is sorted.

• The function is not stable.

5

Anser: The function never terminates. Once two equal elements are
adjacent, a[i] = a[i+ 1], then the function will swap them forever.

6

4 [15 points] Properties of Sorting Algorithms

For each of the sorting algorithms below, indicate whether it is stable, and
whether it is in place:

1. Insertion sort

Stable ? Yes In place ? Yes

2. Bubble sort

Stable ? Yes In place ? Yes

3. Selection sort

Stable ? Yes In place ? Yes

4. Heap sort

Stable ? No In place ? Yes

5. Merge sort

Stable ? Yes In place ? No

6. Quick sort

Stable ? No In place ? Yes

7

5 [30 points] Merging

Consider two sorted arrays a[m], b[n]. The pseudo-code below is the ”merge”
function; it computes a new array c with all elements in a and in b, increasing
order. Viewed as a set, c contains the union of a and b. The function runs
in time O(m+ n):

void Merge(int a[], m, int b[], n, int c[]) {

/* computes the union of a and b */

i = 0; j = 0; k = 0;

while (i < m || j < n) {

if (i >= m) c[k++] = b[j++];

else if (j >= m) c[k++] = a[i++];

else if (a[i] > b[j]) c[k++] = b[j++];

else c[k++] = a[i++];

}

}

Write two new functions, which compute the intersection, and the dif-
ference of the sets a and b respectively. That is, the Intersection func-
tion computes a new array c with all elements that are both in a and in b,
while the Difference function computes a new array c with all elements
that are in a but are not in b. Each of your functions must run in time
O(m + n). You may assume that neither a nor b have duplicate elements;
that is, a[0] < a[1] < . . . < a[n-1] and b[0] < b[1] < . . . < b[n-1].

8

1. The Intersection function. Answer:

void Intersection(int a[], m, int b[], n, int c[]) {
/* computes the intersection of a and b */

i = 0; j = 0; k = 0;

while (i < m && j < n) {
if (a[i]==b[j]) {c[k++] = a[i]; i++; j++}
else if (a[i] < b[j]) i++;

else j++;

}
}

2. The Difference function. Answer:

void Difference(int a[], m, int b[], n, int c[]) {
/* computes the difference of a and b */

i = 0; j = 0; k = 0;

while (i < m) {
if (j >= n || a[i] < b[j]) {c[k++] = a[i++]}
else if (a[i] == b[j]) {i++; j++;}
else j++;

}
}

9

