CSE373 Wi08 Homework 4 due Mon Feb 25 in class
Turn in your answers on your own paper. Please write neatly and clearly to help the TAs.

(6 points) 1. Draw a binary search tree (BST) of integers such that its preorder traversal is:
8 4 1 2 5 6 12 10 9 14 13 15
(4 points) 2. Draw the binary search tree (no balancing done) constructed by successive inserts of

2 1 4 5 8 3 6 7

(6 points) 3. Draw the AVL tree constructed by successive inserts of 2 1 4 5 8 3 6 7. Say which inserts trigger single (outside) rotations and which inserts trigger double (inside) rotations.

(4 points) 4. When we studied binary heaps, we learned there was a slick O(n) algorithm to build a binary heap from an arbitrary array of n items, even though a single insert for a binary heap is O(log n). Prove that it is impossible for there to be an O(n) algorithm to build a binary search tree from an arbitrary array of n items.

Hint: What is the big-Oh for the runtime of doing an inorder traversal on a binary search tree?

Also use the fact that it is impossible to sort an aribitrary list using comparisons in faster than O(n log n).

(10 points) 5. The following is a simplification of code from the book (Fig 4.41) to perform a rotation with the left child.
// rotates a treenode w/ its left child, returning the new root
// precondition: t2, t2.left are not null

private TreeNode rotateWithLeftChild(TreeNode t2) {

 t1 = t2.left;

 t2.left = t1.right;

 t1.right = t2;

 return t1;

}
Assume instead that our TreeNodes have parent links as well, e.g. if t2.left == t1 and t1 nonnull, then t1.parent==t2, and if t2.right==t3 and t3 nonnull, then t3.parent==t2, and the parent linkages are respectively consistent for all other nodes in the tree (the parent of the root is null). Rewrite rotateWithLeftChild so that parent links are transformed appropriately with the rotation. You will be penalized both for missing assignments and unnecessary assignments (if the parent link doesn’t change, don’t reassign it). Your code must not throw a NullPointerException.
Hint: draw a picture
(10 points) 6. In the style of the other BST code we’ve been writing in class or in the book, write a recursive method that runs in O(n) that verifies that a BST is indeed in proper search order (returns true if in search order, false otherwise [this method could be used for testing the validity of a BST implementation]). You may not store values into a list or array, use an iterator, or do anything else that spoils the spirit of the problem.
