CSE 373 WINTER 2008
PRACTICE MIDTERM
(estimated time 50 minutes)

	NAME:

	Problem
	Out of
	Score

	1
	10
	

	2
	10
	

	3
	10
	

	4
	15
	

	5
	15
	

	6
	12
	

	7
	12
	

	8
	8
	

	9
	8
	

	Total
	100
	

	READ AND SIGN THIS:

I certify that the answers on this exam are all my own work, and that I have not discussed the exam questions or answers with anyone in the class who has already taken the exam. I also will not (directly or indirectly) discuss the exam questions or answers with anyone in the class who has not yet taken the exam.
(obviously you don’t need to sign this for the practice exam, but this clause will appear on the real exam, and we will not accept your exam unless it is signed)
__

1. (10 points) Of these seven choices, six of them form pairs with equivalent big-Oh. Which letter has no partner?
A. 2*n^2+n^3

B. log3 n

C. n + n/2 + n/4 + n/8 + n/16 + … + 1

D. n + log (n^3)
E. (log n)^2

F. n*(n+1)*(2*n+1)/6

G. log (n^3)

(this is a bad exam question because it’s hard to give partial credit)

2. (10 points)

For each of the following, answer O(1), O(log n), O(n), O(n log n), or O(n^2) for the runtimes of the following algorithms:
worst-case runtime for binary search

worst-case runtime for linear search

addFirst for a singly linked list

addLast for a singly linked list

removeFirst for a singly linked list

removeLast for a singly linked list

addFirst for a doubly linked list

addLast for a douby linked list

removeFirst for a doubly linked list

removeLast for a singly linked list

3. (10 points) Heaps
6

 38
 34

 47
 50 40 42
Draw the new heap after:
Inserting 41 to the above heap
Draw the new heap after:

Removing the minimum from the original/pictured (7-element) heap

4. (15 points) Algorithm analysis

Label the following methods as: O(log n), O(n), O(n log n), O(n^2), or O(2^n)

a) void foo(int n) {

 if (n<=0) return;

 System.out.println(“hello”);

 foo(n-1);

 }

b) void foo(int n) {

 if (n<=0) return;

 foo(n-1);

 System.out.println(“hello”);

 foo(n-1);

 }

c) void foo(int n) {

 if (n<=0) return;

 for(int i=0; i<n; i++) System.out.println(“hello”);

 foo(n-1);

 }

d) void foo(int n) {

 if (n<=0) return;

 foo(n/2);

 System.out.println(“hello”);

 foo(n/2);

 }

e) void foo(int n) {

 if (n<=0) return;

 System.out.println(“hello”);

 foo(n/2);

 }

5. (15 points) Design choices. What data structure would you choose and why (assume that we want as efficient runtimes as possible)?
(Explain your choice – there may be more than one correct answer.)

a) Implementing the scheduler for an operating system

 b) A data structure for a web crawler to see if I’ve already visited a page

c) A data structure as part of an algorithm to evaluate postfix arithmetic

 d) The words in the dictionary for a spell checker

 e) The words in the dictionary for a human to browser
6. (12 points) For each of the following hashcodes for String, label them as whether they are A) good hash codes, B) poor hash codes that will perform correctly but slowly (lots of collisions), or C) bad hash codes that will result in undefined behavior and mysterious crashing; and in a sentence or two, discuss why.

a) return Object.hashCode()

 b) int hashcode=0;

 for(int i=0; i<16; i++)

 hashcode = 37*hashcode + charAt((i*length())/16);

 return hashcode;

c) int hashcode=0;

 for(int i=0; i<length(); i++)

 hashcode += charAt(i);

 return hashcode;
7. (12 points) Miscellaneous questions

a) Why is it necessary to keep a marker for deleted items in a hashtable using probing (open addressing)?

b) What is a disadvantage of chaining for hashtables?

 c) When we say that a binary heap is complete, what does that mean? How does that let us represent the heap as an array?
d) What should equals do when the parameter passed in is null?
What should compareTo do when the parameter passed in is null?

8) (8 points) Merge sort can be done on a linked list instead of an array. The tricky part is identifying the middle element (or nearly the middle element). Complete the code for findMid(); you may assume the list terminates. Your code must not crash. Return null for the mid of an empty list.
Hint: have two pointers walking through the list, one at 1x pace, one at 2x pace. When the faster reaches the end, the slower is at the middle.

public class LinkedList {

 private static Node {

 Object data;

 Node next;

 }

 private Node head;

 …

 // returns the middle node (within +-1) of this

 private Node findMid() {

 }

9) (8 points)

The following is an excerpt of code to perform the union of two sets represented as sorted lists.

while(ia<a.length && ib<b.length) {

 if (a[ia]<b[ib]) {

 result[k++]=a[ia++];

 } else if (a[ia]>b[ib]) {

 result[k++]=b[ib++];

 } else { // ==

 result[k++]=b[ib++];

 ia++;

 }

}

while(ia<a.length)

 result[k++]=a[ia++];

while(ib<b.length)

 result[k++]=b[ib++];

Rewrite the above code so that it performs the intersection instead of the union.

