Today’s Outline

• Announcements
 – HW #6-7
 • Assignment due Thurs June 5th.
 – Ruth’s Tuesday office hours moved to Thursday June 5th 3:30-4:30pm
• Sorting

Sorting: *The Big Picture*

Problem: Given *n* comparable elements in an array, sort them in an increasing (or decreasing) order.

<table>
<thead>
<tr>
<th>Simple algorithms:</th>
<th>Fancier algorithms:</th>
<th>Comparison lower bound:</th>
<th>Specialized algorithms:</th>
<th>Handling huge data sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(n^2)$</td>
<td>$O(n \log n)$</td>
<td>$\Omega(n \log n)$</td>
<td>$O(n)$</td>
<td>External sorting</td>
</tr>
</tbody>
</table>

- Insertion sort
- Selection sort
- Bubble sort
- Shell sort
 - ... (not visible)
- Heap sort
- Merge sort
- Quick sort
- Bucket sort
- Radix sort

Insertion Sort: Idea

• At the k^{th} step, put the k^{th} input element in the correct place among the first k elements
• **Result:** After the k^{th} step, the first k elements are sorted.

Runtime:
- worst case
- best case
- average case

Selection Sort: Idea

• Find **the** smallest element, put it 1st
• Find **the** next smallest element, put it 2nd
• Find **the** next smallest, put it 3rd
• And so on ...
Mystery(int array a[]) {
 for (int p = 1; p < length; p++) {
 int tmp = a[p];
 for (int j = p; j > 0 && tmp < a[j-1]; j--)
 a[j] = a[j-1];
 a[j] = tmp;
 }
}

What sort is this?

What is its running time?
Best?
Avg?
Worst?

Selection Sort: Code

void SelectionSort (Array a[0..n-1]) {
 for (i=0, i<n; ++i)
 a[j] = Find index of smallest entry in a[i..n-1]
 Swap(a[i],a[j])
 }

Runtime:
worst case :
best case :
average case :

Sorts using other data structures:

How? Runtime?
AVL Sort? |
Heap Sort? |
Slay Sort? |

HeapSort:
Using Priority Queue ADT (heap)

Shove all elements into a priority queue, take them out smallest to largest.

Runtime:

AVL Sort

Would the simpler “Splay sort” take any longer than this?

Merge Sort?
Merge Sort

MergeSort (Array [1..n])
1. Split Array in half
2. Recursively sort each half
3. Merge two halves together

"The 2-pointer method"

Merge (a1[1..n], a2[1..n])
1. i1 = 1, i2 = 1
2. While (i1 < n, i2 < n) {
 if (a1[i1] < a2[i2]) {
 Next is a1[i1]
 i1++
 } else {
 Next is a2[i2]
 i2++
 }
}
3. Now throw in the dregs...

Quick Sort

1. Pick a "pivot"
2. Divide into less-than & greater-than pivot
3. Sort each side recursively

QuickSort Example

0 1 2 3 4 5 6 7 8 9
3 3 3 3 3 3 3 3 3 3

- Choose the pivot as the median of three.
- Place the pivot and the largest at the right and the smallest at the left

QuickSort: Complexity

The steps of QuickSort

QuickSort Example

1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9

- Move i to the right to be larger than pivot.
- Move j to the left to be smaller than pivot.
- Swap
QuickSort Example

Recursive Quicksort

Quicksort(A[]): integer array, left, right : integer): {
 pivotindex : integer;
 if left + CUTOFF ≤ right then
 pivot := median3(A, left, right);
 pivotindex := Partition(A, left, right-1, pivot);
 Quicksort(A, left, pivotindex – 1);
 Quicksort(A, pivotindex + 1, right);
 else
 Insertionsort(A, left, right);
}

Don’t use quicksort for small arrays.
CUTOFF = 10 is reasonable.

Recurrence Relations

Write the recurrence relation for QuickSort:

- Best Case:
- Worst Case:

QuickSort: Worst case complexity

QuickSort: Average case complexity

Turns out to be $O(n \log n)$

See Section 7.7.5 for an idea of the proof. Don’t need to know proof details for this course.
Features of Sorting Algorithms

- **In-place**
 - Sorted items occupy the same space as the original items. (No copying required, only O(1) extra space if any.)
- **Stable**
 - Items in input with the same value end up in the same order as when they began.

Sort Properties

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>stable?</th>
<th>in-place?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Sort?</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Selection Sort?</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Heap Sort?</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>MergeSort?</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>QuickSort?</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

How fast can we sort?

- Heapsort, Mergesort, and Quicksort all run in O(N log N) best case running time
- Can we do any better?
- No, if the basic action is a comparison.

Permutations

- How many possible orderings can you get?
 - **Example:** a, b, c (N = 3)
 - (a b c), (a c b), (b a c), (c a b), (c b a)
 - 6 orderings = 3*2*1 = 3! (i.e., “3 factorial”)
 - All the possible permutations of a set of 3 elements
- For N elements
 - N choices for the first position, (N-1) choices for the second position, …, (2) choices, 1 choice
 - N(N-1)(N-2)…(2)(1) = N! possible orderings

Decision Tree

The leaves contain all the possible orderings of a, b, c
Lower bound on Height
• A binary tree of height h has at most how many leaves?
 \[L \]
• A binary tree with L leaves has height at least:
 \[h \]
• The decision tree has how many leaves:
 \[\text{select just the first } N/2 \text{ terms} \]
• So the decision tree has height:
 \[h \]

\[\log(N!) \text{ is } \Omega(N \log N) \]

\[\log(N!) = \log(N \cdot (N-1) \cdot (N-2) \cdot \ldots \cdot 1) \]
\[= \log N + \log(N-1) + \log(N-2) + \cdots + \log 2 + \log 1 \]
\[\geq \log N + \log(N-1) + \log(N-2) + \cdots + \log \frac{N}{2} \]
\[\geq \frac{N}{2} \log \frac{N}{2} \]
\[\geq \frac{N}{2} (\log N - \log 2) = \frac{N}{2} \log N - \frac{N}{2} \]
\[= \Omega(N \log N) \]

\[\Omega(N \log N) \]
• Run time of any comparison-based sorting algorithm is $\Omega(N \log N)$
• Can we do better if we don’t use comparisons?

BucketSort (aka BinSort, CountingSort)
If all values to be sorted are known to be between 1 and K, create an array count of size K, increment counts while traversing the input, and finally output the result.

Example $K=5$, Input = (5,1,3,4,3,2,1,1,5,4,5)

BucketSort Complexity: $O(n+K)$
• Case 1: K is a constant
 – BinSort is linear time
• Case 2: K is variable
 – Not simply linear time
• Case 3: K is constant but large (e.g. 2^{32})
 – ???

Fixing impracticality: RadixSort
• Radix = “The base of a number system”
 – We’ll use 10 for convenience, but could be anything

• Idea: BucketSort on each digit, least significant to most significant (lsd to msd)
Bucket sort by 1's digit

<table>
<thead>
<tr>
<th>Input data</th>
<th>Bucket sort by 1's digit</th>
<th>After 1st pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>478</td>
<td>0</td>
<td>721</td>
</tr>
<tr>
<td>537</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>721</td>
<td>1</td>
<td>123</td>
</tr>
<tr>
<td>38</td>
<td>6</td>
<td>67</td>
</tr>
<tr>
<td>123</td>
<td>2</td>
<td>38</td>
</tr>
<tr>
<td>67</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

This example uses B=10 and base 10 digits for simplicity of demonstration. Larger bucket counts should be used in an actual implementation.

Radix Sort Example (2nd pass)

<table>
<thead>
<tr>
<th>After 1st pass</th>
<th>Bucket sort by 10's digit</th>
<th>After 2nd pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>123</td>
<td>3</td>
<td>537</td>
</tr>
<tr>
<td>537</td>
<td>7</td>
<td>67</td>
</tr>
<tr>
<td>67</td>
<td>8</td>
<td>478</td>
</tr>
<tr>
<td>478</td>
<td>9</td>
<td>38</td>
</tr>
<tr>
<td>38</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Radix Sort Example (3rd pass)

<table>
<thead>
<tr>
<th>After 2nd pass</th>
<th>Bucket sort by 100's digit</th>
<th>After 3rd pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>721</td>
<td>9</td>
<td>38</td>
</tr>
<tr>
<td>123</td>
<td>38</td>
<td>123</td>
</tr>
<tr>
<td>537</td>
<td>123</td>
<td>67</td>
</tr>
<tr>
<td>38</td>
<td>38</td>
<td>478</td>
</tr>
<tr>
<td>67</td>
<td>478</td>
<td>38</td>
</tr>
<tr>
<td>478</td>
<td>478</td>
<td>9</td>
</tr>
</tbody>
</table>

Invariant: after k passes the low order k digits are sorted.

RadixSort: Complexity

- How many passes?
- How much work per pass?
- Total time?
- Conclusion?
- In practice
 - RadixSort only good for large number of elements with relatively small values. Why?

Internal versus External Sorting

- Need sorting algorithms that minimize disk/tape access time
- **External sorting** – Basic Idea:
 - Load chunk of data into RAM, sort, store this “run” on disk/tape
 - Use the Merge routine from Mergesort to merge runs
 - Repeat until you have only one run (one sorted chunk)
 - Text gives some examples in section 7.10