
1

5/19/2008 1

Graphs

Chapter 9 in Weiss

5/19/2008 2

Today’s Outline

• Announcements
– HW#5 due NOW

– Midterm #2 – this Friday
• Topics, sample exam posted

• Graphs

5/19/2008 3

Graph… ADT?
• Not quite an ADT…

operations not clear

• A formalism for representing
relationships between objects
Graph G = (V,E)

– Set of vertices:
V = {v 1,v 2,…,v n}

– Set of edges:
E = {e 1,e 2,…,e m}
where each ei connects two
vertices (v i1 ,v i2)

Han

Leia

Luke

V = { Han, Leia , Luke }
E = {(Luke , Leia),

(Han, Leia),
(Leia , Han)}

5/19/2008 4

Graph Definitions
In directed graphs, edges have a specific direction:

In undirected graphs, they don’t (edges are two-way):

v is adjacent to u if (u,v) ∈∈∈∈ E

Han

Leia

Luke

Han

Leia

Luke

5/19/2008 5

More Definitions:
Simple Paths and Cycles

A simple path repeats no vertices (except that the first can
be the last):
p = {Seattle, Salt Lake City, San Francisco, Dallas}
p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

A cycle is a path that starts and ends at the same node:
p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}
p = {Seattle, Salt Lake City, Seattle, San Francisco, Seattle}

A simple cycle is a cycle that repeats no vertices except
that the first vertex is also the last (in undirected
graphs, no edge can be repeated)

5/19/2008 6

Trees as Graphs

• Every tree is a graph!

• Not all graphs are trees!

A graph is a tree if
– There are no cycles

(directed or undirected)

– There is a path from the
root to every node

A

B

D E

C

F

HG

2

5/19/2008 7

Directed Acyclic Graphs (DAGs)

DAGs are directed
graphs with no
(directed)
cycles.

main()

add()

access()

mult()

read()
Aside: If program call-graph
is a DAG, then all procedure
calls can be in-lined

5/19/2008 8

Graph Connectivity
Undirected graphs are connected if there is a path between any

two vertices

Directed graphs are strongly connected if there is a path from any
one vertex to any other

Directed graphs are weakly connected if there is a path between
any two vertices, ignoring direction

A complete graph has an edge between every pair of vertices

5/19/2008 9

Graph Representations

0. List of vertices + list of edges
1. 2-D matrix of vertices (marking edges in the cells)

“adjacency matrix”

2. List of vertices each with a list of adjacent vertices
“adjacency list”

Things we might want to do:
• iterate over vertices
• iterate over edges
• iterate over vertices adj. to a vertex
• check whether an edge exists

Han

Leia

Luke

Vertices and edges
may be labeled

5/19/2008 10

Some Applications:
Moving Around Washington

What’s the shortest way to get from Seattle to Pullman?
Edge labels:

5/19/2008 11

Some Applications:
Moving Around Washington

What’s the fastest way to get from Seattle to Pullman?
Edge labels:

5/19/2008 12

Some Applications:
Reliability of Communication

If Wenatchee’s phone exchange goes down,
can Seattle still talk to Pullman?

3

5/19/2008 13

Some Applications:
Bus Routes in Downtown Seattle

If we’re at 3rd and Pine, how can we get to
1st and University using Metro?

5/19/2008 14

Representation 1: Adjacency Matrix

A |V| x |V| array in which an element
(u,v) is true if and only if there is an edge
from u to v

Han

Leia

Luke

Han Luke Leia

Han

Luke

Leia

runtime:space requirements:

5/19/2008 15

Representation 2: Adjacency List

A |V| -ary list (array) in which each entry stores
a list (linked list) of all adjacent vertices

Han

Leia

Luke
Han

Luke

Leia

runtime:space requirements:

5/19/2008 16

Representation
• adjacency matrix:

1 2 3 4





∉
∈

=
E v)(u, if ,0

E v)(u, if ,weight
 A[u][v]

4

3

2

1 1

3 4

2

5/19/2008 17

Representation
• adjacency list:

4

3

2

1

1

3 4

2

5/19/2008 18

Representation
• adjacency list:

4

3

2

1
2 3 4

3

1 2

1

3 4

2

4

5/19/2008 19

Application: Topological Sort
Given a directed graph, G = (V,E) , output all the

vertices in V such that no vertex is output before
any other vertex with an edge to it.

CSE 142 CSE 143

CSE 321

CSE 341

CSE 378

CSE 326

CSE 370

CSE 403

CSE 421

CSE 467

CSE 451

CSE 322

Is the output unique?
5/19/2008 20

1

3

4

2

0

Valid Topological Sorts:

Student Activity

5/19/2008 21

void Graph::topsort(){
Vertex v, w;

labelEachVertexWithItsIn-degree();

for(int count=0; count<NUM_VERTICES; count++){
v = findNewVertexOfDegreeZero();

v.topoNum = count;
for each w adjacent to v

w.indegree--;
}

}

5/19/2008 22

void Graph::topsort(){
Vertex v, w;

labelEachVertexWithItsIn-degree();

for(int count=0; count<NUM_VERTICES; count++){
v = findNewVertexOfDegreeZero();

v.topoNum = count;
for each w adjacent to v

w.indegree--;
}

}

Student Activity

Runtime:

5/19/2008 23

void Graph::topsort(){
Queue q(NUM_VERTICES); int counter = 0; Vertex v, w ;

labelEachVertexWithItsIn-degree();

q.makeEmpty();

for each vertex v

if (v.indegree == 0)

q.enqueue(v);

while (!q.isEmpty()){

v = q.dequeue();
v.topologicalNum = ++counter;

for each w adjacent to v

if (--w.indegree == 0)

q.enqueue(w);
}

}

intialize the
queue

get a vertex with
indegree 0

insert new
eligible
vertices

Runtime:

Student Activity

