
1

5/14/2008 1

Hash Tables

CSE 373
Data Structures & Algorithms

Ruth Anderson
Spring 2008

5/14/2008 2

Today’s Outline

• Admin:
– HW #5 – due Monday May 19

• Wed at beginning of class = latest accepted

– Midterm #2 – Friday May 23
– Feedback Survey

• Hash Tables (Weiss Chapter 5)

5/14/2008 3

Dictionary Implementations

Delete

Find

Insert

AVL
Tree

Binary
Search
Tree

Sorted Array
Unsorted
linked list

O(N)

O(N)

O(log N)

O(log N)

5/14/2008 4

Constant Time Access

Data Set:
• 100 students

• Keys = Student numbers
between 0 and 99.

Solution:
• Array of size 0-99.

• One-to-one mapping:
e.g. student number 2
goes in location 2

99

98

…

2

1

0

5/14/2008 5

Constant Time Access?

Data Set:
• 100 students

• Keys = Student numbers
between 0 and 999999999.

Solution:
• Array of size ?

• Mapping ?

?

…

2

1

0

5/14/2008 6

Hash Tables

• A hash table is an array of some
fixed size.

• General idea:

Key Space (e.g., integers, strings)

…

2

1

0

TableSize –1

Hash Function:
h(K)

Hash Table

2

5/14/2008 7

Example

• Key space = integers

• TableSize = 10

• h(K) = K mod 10

• Insert: 207, 18, 41,
194, 19, 43

2

3

9

8

7

6

5

4

1

0

5/14/2008 8

Another Example

• key space = integers

• TableSize = 6

• h(K) = K mod 6

• Insert: 7, 18, 41, 34

2

3

5

4

1

0

Student Activity

5/14/2008 9

Hash Functions

1. simple/fast to compute,

2. Avoid collisions
3. have keys distributed evenly among cells.

Perfect Hash function:

5/14/2008 10

Sample Hash Functions:
key space = strings A=0, B=1,...Z=25

s = s0 s1 s2 … s k-1

1. h(s) = s0 mod TableSize

2. h(s) = mod TableSize

3. h(s) = mod TableSize









∑

−

=

1

0

k

i
is








 ⋅∑
−

=

1

0

26
k

i

i
is

5/14/2008 11

Designing a Hash Function for web URLs

s = s0 s1 s2 … s k-1

Issues to take into account:

h(s) =

5/14/2008 12

Collision Resolution

Collision: when two keys map to the same
location in the hash table.

Two ways to resolve collisions:

1. Separate Chaining

2. Open Addressing (linear probing,
quadratic probing, double hashing)

3

5/14/2008 13

Separate Chaining

Separate chaining:
All keys that map to
the same hash value
are kept in a list (or
“bucket”).

2

3

9

8

7

6

5

4

1

0
Insert:
10
22
107
12
42

h(K) = K mod 10

5/14/2008 14

Analysis of Find
The load factor,λ, of a hash table is the ratio:

← # of elements
← table size

For separate chaining,
λ = average # of elements in a bucket

Average # of values needed to examine for a:
• unsuccessful find:

• successful find:

TableSize

N

5/14/2008 15

How Big Should the Hash Table Be?

For Separate Chaining, if we want λ = 1
(e.g. the average # of values per bucket = 1)

• How large should I make the hash table, in
terms of N?

TableSize =

5/14/2008 16

tableSize: Why Prime?

• Suppose
– data stored in hash table: 7160, 493, 60, 55, 321,

900, 810

– tableSize = 10

data hashes to 0, 3, 0, 5, 1, 0, 0

– tableSize = 11

data hashes to 10, 9, 5, 0, 2, 9, 7

Real-life data tends
to have a pattern

Being a multiple of
11 is usually not the
pattern ☺

5/14/2008 17

Open Addressing

2

3

9

8

7

6

5

4

1

0

Insert:
38
19
8
109
10

Linear Probing: after
checking h(k), try
h(k)+1, if that is full, try
h(k)+2, then try
h(k)+3, etc.

h(K) = K mod 10

5/14/2008 18

Terminology Alert!

“Open Hashing”

equals

“Separate Chaining”

“Closed Hashing”

equals

“Open Addressing”Weiss

4

5/14/2008 19

Linear Probing

f(i) = i

• Probe sequence:
0th probe = h(k) mod TableSize

1th probe = (h(k) + 1) mod TableSize

2th probe = (h(k) + 2) mod TableSize

. . .

i th probe = (h(k) + i) mod TableSize
5/14/2008 20

Write pseudocode for find(k) for
Open Addressing with linear probing

• Find(k) returns i where T(i) = k

Student Activity

5/14/2008 21

Linear Probing – Clustering

[R. Sedgewick]

no collision

no collision
collision in small cluster

collision in large cluster

5/14/2008 22

Load Factor in Linear Probing
• For any λ < 1, linear probing will find an empty slot

• Expected # of probes (for large table sizes)
– successful search:

– unsuccessful search:

• Linear probing suffers from primary clustering

• Performance quickly degrades for λ > 1/2

() 








−
+ 21

1
1

2

1

λ

()







−
+

λ1

1
1

2

1

5/14/2008 23

Quadratic Probing

f(i) = i2

• Probe sequence:
0th probe = h(k) mod TableSize
1th probe = (h(k) + 1) mod TableSize
2th probe = (h(k) + 4) mod TableSize
3th probe = (h(k) + 9) mod TableSize
. . .
i th probe = (h(k) + i2) mod TableSize

Less likely
to encounter
Primary
Clustering

5/14/2008 24

Quadratic Probing

2

3

9

8

7

6

5

4

1

0 Insert:
89
18
49
58
79

5

5/14/2008 25

Quadratic Probing Example

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

insert(40)
40%7 = 5

insert(48)
48%7 = 6

insert(5)
5%7 = 5

insert(55)
55%7 = 6

insert(47)
47%7 = 5

But…

5/14/2008 26

Quadratic Probing:
Success guarantee for λ < ½

• If size is prime and λ < ½, then quadratic probing will
find an empty slot in size/2 probes or fewer.
– show for all 0 ≤≤≤≤ i,j ≤≤≤≤ size/2 and i ≠≠≠≠ j

(h(x) + i2) mod size ≠≠≠≠ (h(x) + j2) mod size

– by contradiction: suppose that for some i ≠≠≠≠ j:
(h(x) + i2) mod size = (h(x) + j2) mod size

⇒⇒⇒⇒ i2 mod size = j2 mod size

⇒⇒⇒⇒ (i2 - j2) mod size = 0

⇒⇒⇒⇒ [(i + j)(i - j)] mod size = 0
BUT size does not divide(i-j) or (i+j)

5/14/2008 27

Quadratic Probing: Properties
• For any λ < ½, quadratic probing will find an

empty slot; for bigger λ, quadratic probing may
find a slot

• Quadratic probing does not suffer from primary
clustering: keys hashing to the same area are
not bad

• But what about keys that hash to the samespot?
– Secondary Clustering!

5/14/2008 28

Double Hashing

f(i) = i * g(k)
where g is a second hash function

• Probe sequence:
0th probe = h(k) mod TableSize

1th probe = (h(k) + g(k)) mod TableSize

2th probe = (h(k) + 2*g(k)) mod TableSize

3th probe = (h(k) + 3*g(k)) mod TableSize

. . .

i th probe = (h(k) + i*g(k)) mod TableSize

5/14/2008 29

Double Hashing Example

0

1

2

3

4

5

6 76

76

0

1

2

3

4

5

6

93

76

93

0

1

2

3

4

5

6

93

40

76

40

0

1

2

3

4

5

6

47

93

40

76

47

0

1

2

3

4

5

6

47

93

10

40

76

10

0

1

2

3

4

5

6

47

93

10

55

40

76

55

h(k) = k mod 7 and g(k) = 5 – (k mod 5)

Probes 1 1 1 2 1 2

5/14/2008 30

Resolving Collisions with Double Hashing

2

3

9

8

7

6

5

4

1

0

Insert these values into the hash table
in this order. Resolve any collisions
with double hashing:

13
28
33
147
43

Hash Functions:
H(K) = K mod M
H2(K) = 1 + ((K/M) mod (M-1))
M =

6

5/14/2008 31

Idea: When the table gets too full, create a
bigger table (usually 2x as large) and hash
all the items from the original table into the
new table.

• When to rehash?
– half full (λ = 0.5)

– when an insertion fails

– some other threshold

• Cost of rehashing?

Rehashing

5/14/2008 32

Hashing Summary

• Hashing is one of the most important data
structures.

• Hashing has many applications where
operations are limited to find, insert, and
delete.

• Dynamic hash tables have good amortized
complexity.

