
1

5/14/2008 1

Hash Tables 

CSE 373
Data Structures & Algorithms

Ruth Anderson
Spring 2008

5/14/2008 2

Today’s Outline

• Admin: 
– HW #5 – due Monday May 19

• Wed at beginning of class = latest accepted

– Midterm #2 – Friday May 23
– Feedback Survey

• Hash Tables (Weiss Chapter 5)
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Dictionary Implementations

Delete

Find

Insert

AVL
Tree

Binary
Search
Tree

Sorted Array
Unsorted 
linked list

O(N)

O(N)

O(log N)

O(log N)
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Constant Time Access

Data Set:
• 100 students

• Keys = Student numbers 
between 0 and 99.

Solution:
• Array of size 0-99.

• One-to-one mapping:
e.g. student number 2 
goes in location 2
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Constant Time Access?

Data Set:
• 100 students

• Keys = Student numbers 
between 0 and 999999999.

Solution:
• Array of size ?

• Mapping ?

?
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Hash Tables

• A hash table is an array of some 
fixed size.

• General idea:

Key Space (e.g., integers, strings)

…

2
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TableSize –1 

Hash Function:
h(K)

Hash Table
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Example

• Key space = integers

• TableSize = 10

• h(K) = K mod 10

• Insert: 207, 18, 41, 
194, 19, 43
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Another Example

• key space = integers

• TableSize = 6

• h(K) = K mod 6

• Insert: 7, 18, 41, 34

2

3

5

4

1

0

Student Activity
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Hash Functions

1. simple/fast to compute,

2. Avoid collisions
3. have keys distributed evenly among cells.

Perfect Hash function:
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Sample Hash Functions:
key space = strings A=0, B=1,...Z=25

s = s0 s1 s2 … s k-1

1. h(s) = s0 mod TableSize

2. h(s) = mod TableSize

3. h(s) = mod TableSize
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Designing a Hash Function for web URLs

s = s0 s1 s2 … s k-1

Issues to take into account:

h(s) =
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Collision Resolution

Collision: when two keys map to the same 
location in the hash table.  

Two ways to resolve collisions:

1. Separate Chaining

2. Open Addressing (linear probing, 
quadratic probing, double hashing)
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Separate Chaining

Separate chaining: 
All keys that map to 
the same hash value 
are kept in a list (or 
“bucket”).
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Insert:
10
22
107
12
42

h(K) = K mod 10
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Analysis of Find
The load factor,λ, of a hash table is the ratio:   

← # of elements
← table size

For separate chaining, 
λ = average # of elements in a bucket

Average # of values needed to examine for a:
• unsuccessful find:

• successful find:

TableSize

N
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How Big Should the Hash Table Be?

For Separate Chaining, if we want λ = 1
(e.g. the average # of values per bucket = 1)

• How large should I make the hash table, in 
terms of N? 

TableSize = 
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tableSize: Why Prime?

• Suppose
– data stored in hash table: 7160, 493, 60, 55, 321, 

900, 810

– tableSize = 10

data hashes to 0, 3, 0, 5, 1, 0, 0

– tableSize = 11

data hashes to 10, 9, 5, 0, 2, 9, 7

Real-life data tends 
to have a pattern

Being a multiple of 
11 is usually not the 
pattern ☺
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Open Addressing
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Insert:
38
19
8
109
10

Linear Probing: after 
checking h(k), try 
h(k)+1, if that is full, try 
h(k)+2, then try
h(k)+3, etc.

h(K) = K mod 10
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Terminology Alert!

“Open Hashing”

equals

“Separate Chaining”

“Closed Hashing”

equals

“Open Addressing”Weiss
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Linear Probing

f(i) = i

• Probe sequence:
0th probe =  h(k) mod TableSize

1th probe = (h(k) + 1) mod TableSize

2th probe = (h(k) + 2) mod TableSize

. . .

i th probe = (h(k) + i) mod TableSize
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Write pseudocode for find(k) for 
Open Addressing with linear probing

• Find(k) returns i where T(i) = k

Student Activity
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Linear Probing – Clustering 

[R. Sedgewick]

no collision

no collision
collision in small cluster

collision in large cluster
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Load Factor in Linear Probing
• For any λ < 1, linear probing will find an empty slot

• Expected # of probes (for large table sizes)
– successful search:

– unsuccessful search:

• Linear probing suffers from primary clustering

• Performance quickly degrades for λ > 1/2
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Quadratic Probing

f(i) = i2

• Probe sequence:
0th probe =  h(k) mod TableSize
1th probe = (h(k) + 1) mod TableSize
2th probe = (h(k) + 4) mod TableSize
3th probe = (h(k) + 9) mod TableSize
. . .
i th probe = (h(k) + i2) mod TableSize

Less likely 
to encounter 
Primary 
Clustering
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Quadratic Probing
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Quadratic Probing Example
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insert(76)
76%7 = 6

insert(40)
40%7 = 5

insert(48)
48%7 = 6

insert(5)
5%7 = 5

insert(55)
55%7 = 6

insert(47)
47%7 = 5

But…
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Quadratic Probing:
Success guarantee for λ < ½

• If size is prime and λ < ½, then quadratic probing will 
find an empty slot in size/2 probes or fewer.
– show for all 0 ≤≤≤≤ i,j ≤≤≤≤ size/2 and i ≠≠≠≠ j

(h(x) + i2) mod size ≠≠≠≠ (h(x) + j2) mod size

– by contradiction: suppose that for some i ≠≠≠≠ j:
(h(x) + i2) mod size = (h(x) + j2) mod size

⇒⇒⇒⇒ i2 mod size = j2 mod size

⇒⇒⇒⇒ (i2 - j2) mod size = 0

⇒⇒⇒⇒ [(i + j)(i - j)] mod size = 0
BUT size does not divide(i-j) or (i+j)
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Quadratic Probing: Properties
• For any λ < ½, quadratic probing will find an 

empty slot; for bigger λ, quadratic probing may
find a slot

• Quadratic probing does not suffer from primary
clustering: keys hashing to the same area are 
not bad

• But what about keys that hash to the samespot?
– Secondary Clustering!
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Double Hashing

f(i) = i * g(k)
where g is a second hash function 

• Probe sequence:
0th probe =  h(k) mod TableSize

1th probe = (h(k) + g(k)) mod TableSize

2th probe = (h(k) + 2*g(k)) mod TableSize

3th probe = (h(k) + 3*g(k)) mod TableSize

. . .

i th probe = (h(k) + i*g(k)) mod TableSize
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Double Hashing Example
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h(k) = k mod 7 and g(k) = 5 – (k mod 5)

Probes  1                   1                 1                 2                 1                 2
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Resolving Collisions with Double Hashing
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Insert these values into the hash table 
in this order.  Resolve any collisions 
with double hashing:

13
28
33
147
43

Hash Functions:
H(K) = K mod M
H2(K) = 1 + ((K/M) mod (M-1))
M =
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Idea: When the table gets too full, create a 
bigger table (usually 2x as large) and hash 
all the items from the original table into the 
new table.

• When to rehash?
– half full (λ = 0.5)

– when an insertion fails

– some other threshold

• Cost of rehashing?

Rehashing
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Hashing Summary

• Hashing is one of the most important data 
structures.

• Hashing has many applications where 
operations are limited to find, insert, and 
delete.

• Dynamic hash tables have good amortized 
complexity.


