B-Trees

CSE 373
Data Structures & Algorithms
Ruth Anderson
Spring 2008

Today'’s Outline
* Admin:
— HW #5 coming soon — due Monday May 19
— Midterm #2 — Friday May 23

* B-trees (Weiss4.7)

05/09/2008 2

Trees so far

« BST

« AVL

* Splay

05/09/2008

cPU Time to access:

(has registers) 1 ns per instruction

SRAM
Cache Cache
8KB - 4MB 2.10ns

Main Memory
DRAM Main Memory
up to 10GB 40-100 ns
e —
many GB milliseconds
(5-10 Million ns)
05/09/2008 4

M-ary Search Tree

» Maximum branching factor ofi
« Completetree has height =

disk accesses féind:

Runtime offind:

05/09/2008

Solution: B-Trees
« specializedM-ary search trees

¢ Eachnode has (up to) M-1 keys:
— subtree between two key&ndy contains
leaves withvalues v such that
XSV<y

¢ Pick branching factor M
such that each node
takes one full
{page, block}

of memory
05/09/2008 6

B-Trees

What makes them disk-friendly?

1. Many keysstored in anode
e All brought to memory/cache in one access!

2. Internal nodes contaonly keys;
Only leaf nodes contain keys and actual data
* The tree structurean be loaded into memory
irrespective of data object size
» Data actually resides in disk

05/09/2008 7

B-Tree Propertie$

— Data is stored at theaves

— All leavesare at the same depth and contain betwegn
[L/2] andL data items

— Internalnodes store up tl-1 keys
— Internalnodes have betweéM/2] andM children

— Root(special case) has between 2 dhdhildren
(or root could be a leaf)

05/09/2008 *These are technically*Blrees o

B-trees vs. AVL trees

Suppose we have 100 million items (100,000,000):

« Depth of AVL Tree

¢ Depth of B+ Tree with M = 128, = 64

05/09/2008 11

B-Tree: Example

B-Tree withM = 4 (# pointersin internal node)
(# dataitemsin Leaf)

andL = 4

[adla2 T]
[3]5]6]9] 1517 T] [30[32/33[36] [5df60[70] |

Data objects, that I'll ignore in slides

05/09/2008 8
Note: All leaves at the same depth!

Example, Again

B-Tree withM = 4
andL = 4

[al2[T] (101112 | 202526 |
[3]5]6]9] (1517 T] [30[32/33[36] [s0f60[70] |

(Only showing keys, but leaves also have data!)
05/09/2008 10

Building a B-Tree

1] [s[]
Insert@) Insert(L4)
The empty
B-Tree
M=31L =2

Now, Insert()?

05/09/2008 12

M=3L =2

Splitting the Root

Too many
keys in a leaf!
(1[3]i4
Insert(L) {1 | And create
a new root

So, split the leaf.

05/09/2008 13

Add new

Insert6)
child

Create a
new root

M=3L =2

Overflowing leaves oo many

keys in a leaf!

Insert69) Insert@6)

so,split the leaf

a new child

05/09/2008 14

So, split the node.

M=31L =2

After More Routine Inserts

Insert@9)
Insert(79)

05/09/2008

Insertion Algorithm

3. If an internal node ends up
with M+1 items,over flow!
— Split the node into two nodes:
« original with [(M+1) / 2] items
« new one with (M+1) / 2] items
— Add the new child to the parent
— If the parent ends up witi+1
items,overflow!

1. Insert the key in its leaf
2. If the leaf ends up with L+1
items,over flow!
— Split the leaf into two nodes:
« original with [(L+1) / 2]items
« new one with (L+1) / 2]items
— Add the new child to the parent
— If the parent ends up wittt1
items,overflow!

4. Split an overflowed root in tw
and hang the new nodes und
a new root

g
This makes the tree deepe/f!

05/09/2008 16

Deletion

1. Delete item from leaf
2. Update keys of ancestors if necessary

Delete69)

What could go wrong?

05/09/2008 18

Deletef)

Deletion and Adoption

A leaf has too few keys!

05/09/2008

19

Delete@)

Deletion and Merging

A leaf has too few keys!

But now an internal node
05/09/2008
has too few subtrees!

So, delete|
the leaf

21

Delete()

05/09/2008

(adopt a
sibling)

23

Does Adoption Always Work?

* What if the sibling doesn’t have enough for you to
borrow from?

e.g. you havBL/2]-1 and sibling halsL/2]?

05/09/2008 20

w=sT=2Deletion with Propagatfio
(More Adoption)

Adopt a
neighbor

05/09/2008 22

M=3 L .2
Fiulllng OUt the RC)OtAleafhastoofew keys!

And no sibling with surplus!

Delete

Delete@6) So, delet

the leaf

merge
But now theroot A node has too few subtrees
has just one subtree! and no neighbor with surplus!

the node

24

M=3L =2

Pulling out the Root (continued)

Theroot
has just one subtree!

Simply make
the one child
the new root!

05/09/2008

Deletion Algorithm

1. Remove the key from its leaf

2. If the leaf ends up with fewer

thanL/ 27 items,underflow!

— Adopt data from a sibling;
update the parent

— If adopting won't work, delete
node and merge with neighbo

— If the parent ends up with
fewer tharfm 27 items,

under flow!
05/09/2008 26

=

Deletion Slide Two

3. If an internal node ends up with
fewer tharfm 27 items,underflow!
— Adopt from a neighbor;
update the parent
— If adoption won't work,
merge with neighbor

— If the parent ends up with fewer than
M 27items,underflow!

: _ This reduces the
4.1f the root ends up with only one /’ height of the tree!

child, make the child the new root
of the tree

05/09/2008 27

Thinking about B-Trees

« B-Treeinsertion can cause (expensive) splitting
and propagation

« B-Treedeletion can cause (cheap) adoption or
(expensive) deletion, merging and propagation

« Propagation is rare MandL are large
(Why?)

« If M= L = 128, then a B-Tree of height 4 will
store at least 30,000,000 items

05/09/2008 28

Tree Names You Might Encounter

FYI:
— B-Trees withM = 3,L = x are calle®-3trees
+ Nodes can have 2 or 3 pointers
— B-Trees withM = 4, L = x are called?-3-4 trees
« Nodes can have 2, 3, or 4 pointers

05/09/2008 29

