Memory Hierarchy

CSE 373
Data Structures & Algorithms
Ruth Anderson
Spring 2008

public interface PriorityQueue
<E extends Comparable<? super E>> {
...

public class ThreeHeap
<E extends Comparable<? super E>>
implements PriorityQueue<E> {
...

private E[] nodes;
...

05/07/2008

Today’s Outline

• Admin:
 – HW #4 due Thursday at 11:59pm
 – Printouts and written problems due at the beginning of class Friday
 – Late Penalty = -25% per 24 hours, submit via email (including electronic version of written problems)

• Memory Hierarchy and Locality

Why do we need to know about the memory hierarchy/locality?

• One of the assumptions that Big-Oh makes is that all operations take the same amount of time.
• Is that really true?

Definitions

Cycle – (for our purposes) the time it takes to execute a single simple instruction. (ex. Add 2 registers together)

Memory Latency – time it takes to access memory

05/07/2008

05/07/2008

05/07/2008

05/07/2008

05/07/2008
Moore’s Law

Processor-Memory Performance Gap

• x86 CPU speed (100x over 10 years)

What can be done?

• **Goal:** Attempt to reduce the number of accesses to the slower levels.
• **How?**

Locality

Temporal Locality (locality in time) – If an item is referenced, it will tend to be referenced again soon.

Spatial Locality (locality in space) – If an item is referenced, items whose addresses are close by will tend to be referenced soon.

Caches

• Each level is a **subset** of the level below.

Cache Hit – address requested is in cache
Cache Miss – address requested is NOT in cache
Cache line size (chunk size) – the number of contiguous bytes that are moved into the cache at one time

Examples

\[x = a + 6; \quad x = a[0] + 6; \]
\[y = a + 5; \quad y = a[1] + 5; \]
\[z = 8 \times a; \quad z = 8 \times a[2]; \]
Locality and Data Structures

- Which has (at least the potential for) better spatial locality, arrays or linked lists?