Worst Case for Weighted Union

- \(n/2 \) Weighted Unions
- \(n/4 \) Weighted Unions

Example of Worst Case (cont’)

After \(n/2 + n/4 + \ldots + 1 \) Weighted Unions:

If there are \(n = 2^k \) nodes then the longest path from leaf to root has length \(k \).

Array Implementation

\[
\begin{array}{cccccccc}
2 & 1 & 3 & 4 & 7 & 5 & 6 & 1 \\
\uparrow & & & & & & & \\
1 & 2 & 3 & 4 & 6 & 7 & & \\
\end{array}
\]

Weighted Union

\[
\text{W-Union}(i, j : \text{index}) \{
\text{// } i \text{ and } j \text{ are roots}
\text{wi := weight}[i];
\text{wj := weight}[j];
\text{if } wi < wj \text{ then }
\text{up}[i] := j;
\text{weight}[j] := wi + wj;
\text{else }
\text{up}[j] := i;
\text{weight}[i] := wi + wj;
\}
\]

Nifty Storage Trick

- Use the same array representation as before
- Instead of storing -1 for the root, simply store -size

How about Union-by-height?

- Can still guarantee \(O(\log n) \) worst case depth

Left as an exercise! (see Weiss p. 300)

Problem: Union-by-height doesn’t combine very well with the new find optimization technique we’ll see next.
Path Compression

- On a Find operation point all the nodes on the search path directly to the root.

Student Activity

Draw the result of Find(e):

Path Compression Find

```
PC-Find(i : index) {
    r := i;
    while up[r] ≠ -1 do //find root
        r := up[r];
    // Assert: r= the root, up[r] = -1
    if i ≠ r then  // if i was not a root
        temp := up[i];
        while temp ≠ r do // compress path
            up[i] := r;
            i := temp;
            temp := up[temp];
    return(r)
}
```

Self-Adjustment Works

Interlude: A Really Slow Function

Ackermann’s function is a really big function $A(x, y)$ with inverse $\alpha(x, y)$ which is really small

How fast does $\alpha(x, y)$ grow?

$\alpha(x, y) = 4$ for x far larger than the number of atoms in the universe (2^{100})

α shows up in:
- Computation Geometry (surface complexity)
- Combinatorics of sequences
A More Comprehensible Slow Function

\(\log^* x \) = number of times you need to compute \(\log \) to bring value down to at most 1

E.g. \(\log^* 2 = 1 \)
\(\log^* 4 = \log^* 2^2 = 2 \)
\(\log^* 16 = \log^* 2^4 = 3 \) (\(\log \log 16 = 1 \))
\(\log^* 65536 = \log^* 2^{2^8} = 4 \) (\(\log \log \log 65536 = 1 \))
\(\log^* 2^{2^{2^{2^{2^{2^{2^{2^{2^{2}}}}}}}}} = \ldots \ldots = 5 \)

Take this: \(\alpha(m,n) \) grows even slower than \(\log^* n \) !!

Complex Complexity of Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, \(p \) union and find operations on a set of \(n \) elements have worst case complexity of \(O(p \cdot \alpha(p, n)) \)

For all practical purposes this is amortized constant time: \(O(p \cdot 4) \) for \(p \) operations!

- Very complex analysis – worse than splay tree analysis etc. that we skipped!

Disjoint Union / Find with Weighted Union and PC

- Worst case time complexity for a W-Union is \(O(1) \) and for a PC-Find is \(O(\log n) \).
- Time complexity for \(m \geq n \) operations on \(n \) elements is \(O(m \log^* n) \) where \(\log^* n \) is a very slow growing function.
 - Log \(\log^* n \) < 7 for all reasonable \(n \). Essentially constant time per operation!

Amortized Complexity

- For disjoint union / find with weighted union and path compression.
 - average time per operation is essentially a constant.
 - worst case time for a PC-Find is \(O(\log n) \).
- An individual operation can be costly, but over time the average cost per operation is not.