Worst Case for Weighted Union

n/2 Weighted Unions

$888883¢

n/4 Weighted Unions
opi o% o% op\g

5/05/2008 31

Example of Worst Case (cont’)

After n/2 + n/4 + ...+ 1 Weighted Unions:

If there are n = 2 nodes then the longest
path from leaf to root has length k.

5/05/2008 32

Array Implementation

RIRL"
.

Weighted Union

WUnion(i,j : index){
/li and j are roots
w = weight[il];

W o= weight[j];

if ww <w then

up[i] :=j;
weight[j] = w + wj;
el se

upl[j] :=i;

weight[i] (= wi +w;

new runtime for Union():

new runtime for Find():
runtime for mfinds and n-1 unions =

5/05/2008 34

123456
up |-11]-1]7]7]5
weight | 2 1
Nifty Storage Trick

» Use the same array representation as beforg
* Instead of storing1 for the root,

simply store-size

[Read section 8.4, page 299]

5/05/2008 35

How about Union-by-height

* Can still guarantee O(lag) worst case
depth

Left asan exercise! (see Weiss p. 300)

Problem: Union-by-height doesn’t combine very
well with the new find optimization technique
we'll see next

5/05/2008 36

Path Compression

« On a Find operation point all the nodes on the
search path directly to the root.

b g e
@{@ ®

5/05/2008 37

Path Compression

« On a Find operation point all the nodes on the
search path directly to the root.

) (5{ pc.ﬁn«a)@\@ ®® 0@
gty

5/05/2008 38

Draw the result of Find(e):

(05/200: 39

Self-Adjustment Works

v

| V] VVVIN
PC-Find(x) 1\ \

x

ALY
(4444444

5/05/2008 40

Path Compression Find

PC-Find(i : index) {
ro=i;
while up[r] # -1 do //find root
roo=up[r];
Il Assert: r= the root, up[r] = -1

if i #r then /1 if i was not a root

tenp := up[i];
while tenp # r do // compress path
up[i] =r;
i = tenp;
tenp := up[tenp]
return(r) (New?) runtime for Find:
5/05/2008} 41

Interlude: A Really Slow Function

Ackermann'’s function is a_reallybig function A, y)
with inversea(x, y) which is_reallysmall

How fast doesi(x, y) grow?

a(x,y) = 4 forx far larger than the number of atoms
in the universe @9

o shows up in:
— Computation Geometry (surface complexity)
— Combinatorics of sequences

5/05/2008 42

A More Comprehensible Slow Function

log* x = number of times you need to compute
log to bring value down to at most 1

E.g.logr2=1
log* 4 =log* 2= 2
log* 16 = log* 2= 3 (log log log 16 = 1)
log* 65536 = log* 22-4 (log log log log 65536 = 1)
log* 265536==5

Take this:a(m,n) grows even slower than log* !!

5/05/2008 43

Disjoint Union / Find
with Weighted Union and PC

» Worst case time complexity for a W-Union
is O(1) and for a PC-Find is O(log n).

» Time complexity for n= n operations on n
elements is O(m log* n) where log* nis a
very slow growing function.

—Log * n < 7 for all reasonable n. Essentially
constant time per operation!

5/05/2008 45

Complex Complexity of
Union-by-Size + Path Compression

Tarjan proved that, with these optimizatiopsinion and
find operations on a set nfelements have worst case
complexity ofO(p Ct(p, n))

Forall practical purposesthis is amortized constant time:
O(p 4) for p operations!

» Very complex analysis — worse than splay tree aigly
etc. that we skipped!

5/05/2008 44

Amortized Complexity

* For disjoint union / find with weighted
union and path compression.

— average time per operation is essentially a
constant.

— worst case time for a PC-Find is O(log n).
» An individual operation can be costly, but

over time the average cost per operation is
not.

5/05/2008 46

