
1

5/02/2008 1

Disjoint Sets

CSE 373
Data Structures & Algorithms

Ruth Anderson
Spring 2008

5/02/2008 2

Today’s Outline

• Admin:
– HW #4 due – Thurs 5/03 at 11:59pm

• Print out of code

• Write-up

• Disjoint Sets (Chapter 8)

5/02/2008 3

Disjoint Set-Definition

• Set
– A collection of distinct objects (unique in that set)

– Sorted? Operations?

• Disjoint sets
– A member of a set is unique among all sets

– Example: {3,5,7}, {4,2,8}, {9}, {1,6}

• Each set has a unique name, one of its members
– {3,5,7}, {4,2,8}, { 9}, { 1,6}

– Operations? 5/02/2008 4

Union

• Union(x,y) – take the union of two sets
named x and y
– {3,5,7} , {4,2,8}, { 9}, { 1,6}

– Union(5,1)

{3,5,7,1,6}, {4,2,8}, { 9},

Or {3,5,7,1,6}, {4,2,8}, { 9}

5/02/2008 5

Find

• Find(x) – return the name of the set
containing x.
– {3,5,7,1,6}, {4,2,8}, { 9},

– Find(1) = 5

– Find(4) = 8

5/02/2008 6

Building Mazes

• Build a random maze by erasing edges.

2

5/02/2008 7

Building Mazes (2)

• Pick Start and End

Start

End

5/02/2008 8

Building Mazes (3)

• Repeatedly pick random edges to delete.

Start

End

5/02/2008 9

Desired Properties

• None of the boundary is deleted

• Every cell is reachable from every other
cell.

• Only one path from any one cell to another
(There are no cycles – no cell can reach
itself by a path unless it retraces some part
of the path.)

5/02/2008 10

A Cycle

Start

End

5/02/2008 11

A Good Solution

Start

End

5/02/2008 12

A Hidden Tree

Start

End

3

5/02/2008 13

Number the Cells

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

We have disjoint sets S ={ {1}, {2}, {3}, {4},… {36} } each cell is unto itself.
We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), … } 60 edges total.

5/02/2008 14

Basic Algorithm
• S = set of sets of connected cells
• E = set of edges
• Maze= set of maze edges (initially empty)

While there is more than one set in S {
pick a random edge (x,y) and remove from E
u := Find(x);
v := Find(y);
if u ≠ v then // removing edge (x,y) connects previously non-

// connected cells x and y - leave this edge removed!
Union(u,v)

else // cells x and y were already connected, add this
// edge to set of edges that will make up final maze.

add (x,y) to Maze
}
All remaining membersof E together with Mazeform the maze

5/02/2008 15

Example Step

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,30,32
33,34,35,36}

Pick (8,14)

5/02/2008 16

Example
S
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Find(8) = 7
Find(14) = 20

S
{1,2,7,8,9,13,19,14,20 26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Union(7,20)

5/02/2008 17

Example

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,7,8,9,13,19

14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Pick (19,20)

5/02/2008 18

Example at the End

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,3,4,5,6,7,… 36}

E
Maze

4

5/02/2008 19

Implementing the DS ADT
• n elements,

Total Cost of:m finds, ≤ n-1 unions

• Target complexity: O(m+n)
i.e. O(1) amortized

• O(1) worst-case for find as well as union
would be great, but…

Known result: both find and union cannot
be done in worst-case O(1) time

can there be
more unions?

5/02/2008 20

Up-Tree for Disjoint Union/Find

1 2 3 4 5 6 7Initial state:

1

2

3

45

6

7After several
Unions:

Roots are the names of each set.

5/02/2008 21

Find Operation

Find(x) - follow x to the root and return the root

1

2

3

45

6

7

Find(6) = 7

5/02/2008 22

Union Operation

Union(x,y) - assuming x and y are roots, point y to x.

1

2

3

45

6

7

Union(1,7)

5/02/2008 23

Simple Implementation

• Array of indices

1

2

3

45

6

7

0 1 0 7 7 5 0

1 2 3 4 5 6 7

up

Up[x] = 0 means
x is a root.

5/02/2008 24

Implementation

int Find(int x) {

while(up[x] != 0) {

x = up[x];

}

return x;

}

void Union(int x, int y) {

up[y] = x;

}

runtime for Union():

runtime for Find():

runtime for m Finds and n-1 Unions:

5

5/02/2008 25

Now this doesn’t look good �
Can we do better? Yes!

1. Improve unionso that find only takes
Θ(log n)

• Union-by-size
• Reduces complexity to Θ(m log n + n)

2. Improve find so that it becomes even
better!

• Path compression
• Reduces complexity to almostΘ(m + n) 5/02/2008 26

A Bad Case

1 2 3 n…

1

2 3 n

Union(2,1)

1

2

3 n

Union(3,2)

Union(n,n-1)

…

…

1

2

3

n

:
:

Find(1) n steps!!

5/02/2008 27

Weighted Union
• Weighted Union

– Always point the smaller (total # of nodes) tree
to the root of the larger tree

1

2

3

45

6

7

W-Union(1,7)

2 41

5/02/2008 28

Example Again

1 2 3 n

1

2 3 n

W-Union(2,1)

1

2

3

n

W-Union(3,2)

W-Union(n,2)

…

… :
:

1

2

3 n

…

Find(1) constant time
…

5/02/2008 29

Analysis of Weighted Union

With weighted union an up-tree of height h has
weight at least 2h.

• Proof by induction
– Basis: h = 0. The up-tree has one node, 20 = 1

– Inductive step: Assume true for all h’ < h.

h-1
Minimum weight
up-tree of height h
formed by
weighted unions

T1 T2

T W(T1) > W(T2) > 2h-1

Weighted
union

Induction
hypothesis

W(T) > 2h-1 + 2h-1 = 2h

5/02/2008 30

Analysis of Weighted Union (cont)

Let T be an up-tree of weight n formed by
weighted union. Let h be its height.

n > 2h

log2 n > h

• Find(x) in tree T takes O(log n) time.
– Can we do better?

