Priority Queues

CSE 373
Data Structures & Algorithms
Ruth Anderson
Spring 2008

04/28/2008 1

Today’s Outline

* Admin:
— HW #3 due this Thursday 5/1 at 11:59pm
— Printouts due Friday in lecture.

* Priority Queues
— Leftist Heaps

— Skew Heaps

04/28/2008 2

Priority Queues

(Leftist Heaps)

04/28/2008 3

One More Operation

» Merge two heaps. Ideas?

04/28/2008

New Operation: Merge

Given two heaps, merge them into one heap

— first attempt: insert each element of the smaller
heap into the larger.

runtime:

— second attempt: concatenate binary heaps’
arrays and run buildHeap.

runtime:

04/28/2008 5

Leftist Heaps

Idea:

Focus all heap maintenance work in one
small part of the heap

Leftist heaps:
1. Most nodes are on theft
2. All the merging work is done on thight

04/28/2008 6

Definition: Null Path Length Leftist Heap Properties
null path length (npl) of a nodex = the number of nodes between » Heap-order property
and a 'g’g'n its subtree — parent’s priority value is to childrens’ priority
npl(x) = min distance to a descendant with O ohildeen values
— result minimum element is at the root
« npl(null) = -1 ©
* npl(leaf, aka zero children) =0 .
« npl(node with one child) = 0 (2 (? * Leftist property
— For every nodg, npl(left(x)) = npl(right(x))
Equivalent definitions: © D) © © — result tree is at least as “heavy” on the left as thhtfig
1. npl(x) is the height of largest Are leftist trees...
perfect subtree rooted at OJOJ0, lete?
2. npl(x) = 1 + min{npl(left(x)), npl (right(x))} complete:
04/28/2008 7 04/28/2008 balanced? s

Right Path in a Leftist Tree is Short (#1
Claim: The right path is as short asy in the tree.

© Proof (By contradiction)
©) Pick a shorter path: & D, .
Say it diverges from right path at °
y |
npl(L) <D,;-1 because of the path of
©© length D-1 to null 5 o @
1® .
L]

N

Are These Leftist?

©® @ O
©
2
) 0, npl(R)=D,-1 because every node on . ‘.
Ever_y sub_tree of a leftist o right path is leftist il O .
tree is leftist! .
04/28/2008 © 9 0412812008 Leftist property ak violated! Q

Right Path in a Leftist Tree is Short (#2

—

Why do we have the leftist property?

Claim: If the right path has nodes, then the tree hgs
at least]

2"-1 nodes. Because it guarantees that:

Proof (By induction) « theright path isreally short compared to
Base case :r=1.Tree has atleat-1=1 node the number of nodes in the tree
Inductive step : assume true far<r . Prove for tree with right . .

path at least . * A leftist tree of N nodes, hasight path of
1. Right subtree: right path ofL nodes at mostiog (N+1)nodes
= 21 -1 right subtree nodes (by induction)
2. Left subtree: also right path of length asteal (by previous
slide) = 21 -1 left subtree nodes (by induction) .
Total tree size:q 1)+ 2 1) +1=2 -1 Idea — perform all work on the right path

04/28/2008 11 04/28/2008 12

Merge two heaps (basic idea)

» Put the smaller root as the new root,
» Hang its left subtree on the left.

» Recursivelymerge its right subtree and the
other tree.

04/28/2008 13

Merging Two Leftist Heaps

* merge(T,T,) returns one leftist heap
containing all elements of the two (distinct)
leftist heaps Tand T,

A

Merge Continued

If npl(R") >npl(L,)

L R R L,

R =Merge(R, T,)

runtime:

04/28/2008 15

Sewing Up the Example

04/28/2008 17

0 merge

e

® 0 0 g

,,,,,,,,,

0

(special case) (®

04/28/2008 @‘
Finally...

04/28/2008 18

Merge Two Leftist Heaps

Other Heap Operations

* insert ?

@ O » deleteMin ?

20

Operations on Leftist Heaps
Leftist Heaps: Summary

« mergewith two trees of total size n: O(log n)
« insertwith heap size n: O(log n)
— pretend node is a size 1 leftist heap Good
— insert by merging original heap with one node heap .

A O = :

« deleteMinwith heap size n: O(log n)
— remove and return root Bad
— merge left and right subtrees .

™
- i t ‘ merge, ‘
04/28/2008 21 04/28/2008 22

_) Skew Heaps
Amortized Time Problems with leftisheaps

- - — extra storage for npl
am-or-tized time: i . .
Running time limit resulting from “writing off” expe nsive — extra complexity/logic to maintain and check npl
runs of an algorithm over multiple cheap runs of tle — right side is “often” heavy and requires a switch
algorithm, usually resulting in a lower overallrunning time Do
than indicated by the worst possible case. Solutlon.&vxheaps
If M operations take total O(M log N) time, — “blindly” adjusting version of leftist heaps
amortized time per operation is O(log N) — mergealways switches children when fixing right path
— amortized timdor: merge, insert, deleteMin = O(lay)
— however, worst case tinfier all three = Of)

Difference fromaverage time:

04/28/2008 23 04/28/2008 24

Merging Two_SkewHeaps

PN\ O /AN BV

Only one step per iteration, with childrenalways switched

04/28/2008

25

Example

04/28/2008

Skew Heap Code
void merge(heapl, heap2) {
case {
heapl == NULL: return heap2;
heap2 == NULL: return heapl,;

heapl.findM n() < heap2.findMn():

temp = heapl.right;
heapl.right = heapl.left;
heap1.left = merge(heap2, temp);
return heapl;

ot herw se:
return merge(heap2, heapl);

} 04/28/2008

27

Runtime Analysis:
Worst-case and Amortized

No worst case guarantee on right path length!

All operations rely on merge

= worst case complexity of all ops =
Amortized Analysis (Chapter 11)
Result:M merges take tim®1 logn

= amortized complexity of all ops =

04/28/2008

28

Comparing Priority Queu

* Binary Heaps * Leftist Heaps

« d-Heaps » Skew Heaps

29

