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Priority Queues

CSE 373
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Today’s Outline

• Admin: 
– Midterm #1 (Wed April 23)

• Topics posted on course web page

• Priority Queues
– Binary Min Heaps
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Priority Queues
(Binary Min Heaps)
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Priority Queue ADT

• Checkout line at the supermarket ???

• Printer queues ???

• operations: insert, deleteMin

insert deleteMin
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Priority Queue ADT
1. PQueue data : collection of data with priority

2. PQueue operations
– insert

– deleteMin

(also: create, destroy, is_empty)

3. PQueue property: for two elements in the 
queue, x and y, if x has a lower priority value
than y, x will be deleted before y
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Applications of the Priority Q
• Select print jobs in order of decreasing length

• Forward packets on network routers in order of 
urgency

• Select most frequentsymbols for compression

• Sort numbers, picking minimumfirst

• Anything greedy



2

04/21/2008 7

Implementations of Priority Queue ADT

Sorted list (Array)

Unsorted list (Linked-List)

Binary Search Tree (BST)

Sorted list (Linked-List)

Unsorted list (Array)

deleteMininsert
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Representing Complete 
Binary Trees in an Array
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implicit (array) implementation:
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Why better than tree with pointers?
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Heap Order Property

Heap order property: For every non-root 
node X, the value in the parent of X is less 
than (or equal to) the value in X.
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Heap Operations

• findMin:

• insert(val): percolate up.

• deleteMin: percolate down.
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Heap – Insert(val)

Basic Idea: 

1. Put val at “next” leaf position

2. Repeatedly exchange node with its parent 
if needed
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Insert: percolate up
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Heap – Deletemin

Basic Idea: 

1. Remove root (that is always the min!)

2. Put “last” leaf node at root

3. Find smallest child of node

4. Swap node with its smallest child if needed.

5. Repeat steps 3 & 4 until no swaps needed.
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DeleteMin: percolate down
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876543210

Insert: 16, 32, 4, 69, 105, 43, 2
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Other Priority Queue Operations
• decreaseKey

– given a pointer to an object in the queue, reduce its priority value

Solution:  change priority and ____________________________

• increaseKey
– given a pointer to an object in the queue, increase its priority value

Solution: change priority and _____________________________

Why do we need a pointer? Why not simply data value?
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Other Heap Operations
decreaseKey(objPtr, amount): raise the priority of a 

object, percolate up

increaseKey(objPtr, amount): lower the priority of a 
object, percolate down

remove(objPtr): remove a object, move to top, them 
delete. 1) decreaseKey(objPtr, ∞)

2) deleteMin()

Worst case Running time for all of these: 

FindMax?

ExpandHeap – when heap fills, copy into new space.
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Binary Min Heaps (summary)

• insert: percolate up.  O(log N) time.

• deleteMin: percolate down.  O(log N) time.

• Build Heap?
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BuildHeap: Floyd’s Method

5 11 3 10 6 9 4 8 1 7 212

Add elements arbitrarily to form a complete tree.
Pretend it’s a heap and fix the heap-order property!
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Buildheap pseudocode

private void buildHeap() {

for ( int i = currentSize/2; i > 0; i-- )

percolateDown( i );

}

runtime:
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BuildHeap: Floyd’s Method
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Finally…
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runtime:
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Facts about Binary Min Heaps
Observations:
• finding a child/parent index is a multiply/divide by two

• operations jump widely through the heap

• each percolate step looks at only two new nodes

• inserts are at least as common as deleteMins

Realities:
• division/multiplication by powers of two are equally fast

• looking at onlytwo new pieces of data: bad for cache!

• with huge data sets, disk accesses dominate


