
1

04/21/2008 1

Priority Queues

CSE 373
Data Structures & Algorithms

Ruth Anderson
Spring 2008

04/21/2008 2

Today’s Outline

• Admin:
– Midterm #1 (Wed April 23)

• Topics posted on course web page

• Priority Queues
– Binary Min Heaps

04/21/2008 3

Priority Queues
(Binary Min Heaps)

04/21/2008 4

Priority Queue ADT

• Checkout line at the supermarket ???

• Printer queues ???

• operations: insert, deleteMin

insert deleteMin

6 2
15 23

12 18
45 3 7

04/21/2008 5

Priority Queue ADT
1. PQueue data : collection of data with priority

2. PQueue operations
– insert

– deleteMin

(also: create, destroy, is_empty)

3. PQueue property: for two elements in the
queue, x and y, if x has a lower priority value
than y, x will be deleted before y

04/21/2008 6

Applications of the Priority Q
• Select print jobs in order of decreasing length

• Forward packets on network routers in order of
urgency

• Select most frequentsymbols for compression

• Sort numbers, picking minimumfirst

• Anything greedy

2

04/21/2008 7

Implementations of Priority Queue ADT

Sorted list (Array)

Unsorted list (Linked-List)

Binary Search Tree (BST)

Sorted list (Linked-List)

Unsorted list (Array)

deleteMininsert

04/21/2008 8

Representing Complete
Binary Trees in an Array

GED

CB

A

J KH I

F

L

From node i:

left child:
right child:
parent:

7

1

2 3

4 5 6

98 10 11 12

131211109876543210

LKJIHGFEDCBA

implicit (array) implementation:

04/21/2008 9

Why better than tree with pointers?

04/21/2008 10

Heap Order Property

Heap order property: For every non-root
node X, the value in the parent of X is less
than (or equal to) the value in X.

1530

8020

10

996040

8020

10

50 700

85

not a heap

04/21/2008 11

Heap Operations

• findMin:

• insert(val): percolate up.

• deleteMin: percolate down.

996040

8020

10

50 700

85

65

04/21/2008 12

Heap – Insert(val)

Basic Idea:

1. Put val at “next” leaf position

2. Repeatedly exchange node with its parent
if needed

3

04/21/2008 13

Insert: percolate up

996040

8020

10

50 700

85

65 15

992040

8015

10

50 700

85

65 60

04/21/2008 14

Heap – Deletemin

Basic Idea:

1. Remove root (that is always the min!)

2. Put “last” leaf node at root

3. Find smallest child of node

4. Swap node with its smallest child if needed.

5. Repeat steps 3 & 4 until no swaps needed.

04/21/2008 15

DeleteMin: percolate down

996040

1520

10

50 700

85

65

996040

6520

15

50 700

85

04/21/2008 16

876543210

Insert: 16, 32, 4, 69, 105, 43, 2

04/21/2008 17

Other Priority Queue Operations
• decreaseKey

– given a pointer to an object in the queue, reduce its priority value

Solution: change priority and ____________________________

• increaseKey
– given a pointer to an object in the queue, increase its priority value

Solution: change priority and _____________________________

Why do we need a pointer? Why not simply data value?

04/21/2008 18

Other Heap Operations
decreaseKey(objPtr, amount): raise the priority of a

object, percolate up

increaseKey(objPtr, amount): lower the priority of a
object, percolate down

remove(objPtr): remove a object, move to top, them
delete. 1) decreaseKey(objPtr, ∞)

2) deleteMin()

Worst case Running time for all of these:

FindMax?

ExpandHeap – when heap fills, copy into new space.

4

04/21/2008 19

Binary Min Heaps (summary)

• insert: percolate up. O(log N) time.

• deleteMin: percolate down. O(log N) time.

• Build Heap?

04/21/2008 20

BuildHeap: Floyd’s Method

5 11 3 10 6 9 4 8 1 7 212

Add elements arbitrarily to form a complete tree.
Pretend it’s a heap and fix the heap-order property!

27184

96103

115

12

04/21/2008 21

Buildheap pseudocode

private void buildHeap() {

for (int i = currentSize/2; i > 0; i--)

percolateDown(i);

}

runtime:

04/21/2008 22

BuildHeap: Floyd’s Method

67184

92103

115

12

671084

9213

115

12

1171084

9613

25

12

1171084

9653

21

12

04/21/2008 23

Finally…

11710812

9654

23

1

runtime:

04/21/2008 24

Facts about Binary Min Heaps
Observations:
• finding a child/parent index is a multiply/divide by two

• operations jump widely through the heap

• each percolate step looks at only two new nodes

• inserts are at least as common as deleteMins

Realities:
• division/multiplication by powers of two are equally fast

• looking at onlytwo new pieces of data: bad for cache!

• with huge data sets, disk accesses dominate

