Priority Queues

CSE 373
Data Structures & Algorithms
Ruth Anderson
Spring 2008

04/21/2008 1

Today’s Outline

* Admin:
— Midterm #1 (Wed April 23)
» Topics posted on course web page

 Priority Queues
— Binary Min Heaps

04/21/2008 2

Priority Queues
(Binary Min Heaps)

04/21/2008 3

Priority Queue ADT

» Checkout line at the supermarket ???
* Printer queues ???
 operations: insert, deleteMin

04/21/2008 4

Priority Queue ADT

1. PQueuedata: collection of data witlpriority

2. PQueue operations
— insert
— deleteMin
(also: create, destroy, is_empty)

3. PQueue property: for two elements in the
queuex andy, if x has dower priority value
thany, x will be deleted beforg

04/21/2008 5

Applications of the Priority Q

Select print jobs in order of decreasiaggth
Forward packets on network routers in order o
urgency

Select mostrequentsymbols for compression
Sort numbers, pickingiinimumfirst

Anything greedy

04/21/2008 6

Implementations of Priority Queue A

insert deleteMin

Unsorted list (Array)

Unsorted list (Linked-List)

Sorted list (Array)

Sorted list (Linked-List)

Binary Search Tree (BST)

04/21/2008 7

Representing Complete
Binary Trees in an Array

1/® From node:
& D |
4 6 5 @ e@ 7© left child:

right child:
‘@ D'D'o W parent:

implicit (array) implementation:
[[afslclofef[rleln]i[a]k][c] |
0 1 2 3 4 5 6 7 8 9 10 11 12 13

04/21/2008 8

Why better than tree with pointers?

04/21/2008 9

HeapOrder Property

Heap order property: For every non-root
node X, the value in the parent of X is less
than (or equal to) the value in X.

® PN

@ @ D @

@b & @ e 6> @
GD G

not a heap

04/21/2008 10

Heap Operations

* findMin:
« insert(val): percolate up.
* deleteMin: percolate down.

{‘&..

& @ @

04/21/2008 11

Heap — Insert(val)

Basic Idea:
1. Putval at “next” leaf position

2. Repeatedly exchange node with its parent
if needed

04/21/2008 12

Insert: percolate up
6’
@ @ @ 15
.ﬁx e

04/21/2008 13

Heap — Deletemin

Basic Idea:

1. Remove root (that is always the min!)
Put “last” leaf node at root

Find smallest child of node

Swap node with its smallest child if needed.
Repeat steps 3 & 4 until no swaps needed

aoreD

04/21/2008 14

DeleteMin: percolate down

04/21/2008 15

Insert: 16, 32, 4, 69, 105, 43,

04/21/2008 16

Other Priority Queue Operations
* decreaseK ey

— given a pointer to an object in the queue, redisqgriority value

Solution: change priority and
* increaseK ey

— given a pointer to an object in the queue, in@d@spriority value|

Solution: change priority and

Why do we need a pointer? Why not simply data value?

04/21/2008 17

Other Heap Operations

decreaseK ey(obj Ptr, amount): raise the priority of a
object, percolate up

increaseK ey(obj Ptr, amount): lower the priority of a
object, percolate down

remove(objPtr): remove a object, move to top, them
delete. 1) decreaseKej Ptr, «)

2) deleteMin()
Worst case Running time for all of these:
FindMax?
ExpandHeap — when heap fills, copy into new space.

04/21/2008 18

Binary Min Heaps (summary)

« insert: percolate up.O(log N)time.
« deleteMin: percolate downO(log N)time.

 Build Heap?

04/21/2008 19

BuildHeap: Floyd's Method

2[5 1] 3]s 0]ale]1]7]2]

Add elements arbitrarily to form a complete tree.
Pretend it's a heap and fix the heap-order prope(ty

¥

G

04/21/2008 @ . @ @ @

Buildheap pseudocode

private void buildHeap() {
for (int i =currentSize/2; i >0; i--)
percol ateDown(i);

runtime:

04/21/2008 21

BuildHeap: Floyd’'s Method
@2 a2

LATL

04/21,2688
O,

Finally...

@*.

runtime:

04/21/2008 23

Facts about Binary Min Heaps
Observations:
« finding a child/parent index is a multiply/dividby two
 operations jump widely through the heap
» each percolate step looks at only two new nodes
* inserts arat least as common as deleteMins

Realities:
« division/multiplication bypowers of two are equally fast
« looking at onlytwo new pieces of data: bad for cache!

» with huge data sets, disk accesses dominate
04/21/2008 24

