Today’s Outline

• Admin:
 – Assignment #2 due this Friday at beginning of class
 – Midterm #1 (Wed April 23)
• Trees
 – Splay

Splay Trees

Chapter 4 in Weiss

AVL....Other Possibilities?

• Could use different balance conditions, different ways to maintain balance, different guarantees on running time, …

• Why aren’t AVL trees ideal?

• Many other balanced BST data structures
 – Red-Black trees
 – AA trees
 – Splay Trees
 – 2-3 Trees
 – B-Trees

Splay Trees

• Blind adjusting version of AVL trees
 – Why worry about balances? Just rotate anyway!
• Amortized time per operations is $O(\log n)$
• Worst case time per operation is $O(n)$
 – But guaranteed to happen rarely

Insert/Find always rotate node to the root!

Amortized Analysis

• Given a worst case sequence of operations, find the average running time per operation
• Examples:
 – amortized cost per week of owning a car,
 – amortized cost per operation of inserting values into an unsorted array
• $T(n)$ = upper bound on total cost of a sequence of n operations
• $T(n)/n =$ amortized time per operation
Amortized Complexity
If a sequence of M operations takes $O(M \, f(n))$ time, we say the amortized runtime is $O(f(n))$.

- Worst case time per operation can still be large, say $O(n)$
- Worst case time for any sequence of M operations is $O(M \, f(n))$

Average time per operation for any sequence is $O(f(n))$

Amortized complexity is worst-case guarantee over sequences of operations.

The Splay Tree Idea
If you’re forced to make a really deep access:
Since you’re down there anyway, fix up a lot of deep nodes!

Find/Insert in Splay Trees
1. Find or insert a node k
2. Splay k to the root using: zig-zag, zig-zig, or plain old zig rotation

Why could this be good??

1. Helps the new root, k
 o Great if k is accessed again
2. And helps many others!
 o Great if many others on the path are accessed

Splaying node k to the root: Need to be careful!

One option (that we won’t use) is to repeatedly use AVL single rotation until k becomes the root: (see Section 4.5.1 for details)

Splay: Zig-Zag*

What’s bad about this process?

*Just like an… Which nodes improve depth?
*Is this just two AVL single rotations in a row?

Relative depth of \(p, Y, Z \)? Relative depth of everyone else?

Why not drop zig-zig and just zig all the way?

Splaying Example: Find(6)

Still Splaying 6

Finally…

Another Splay: Find(4)
But Wait…

What happened here?

Didn’t two find operations take linear time instead of logarithmic?

What about the amortized $O(\log n)$ guarantee?

Why Splaying Helps

• If a node n on the access path is at depth d before the splay, it’s at about depth $d/2$ after the splay

• Overall, nodes which are low on the access path tend to move closer to the root

• Splaying gets amortized $O(\log n)$ performance.

Practical Benefit of Splaying

• No heights to maintain, no imbalance to check for
 – Less storage per node, easier to code

• Often data that is accessed once, is soon accessed again!
 – Splaying does implicit caching by bringing it to the root

Splay Operations: Find

• Find the node in normal BST manner
• Splay the node to the root
 – if node not found, splay what would have been its parent

What if we didn’t splay?
Splay Operations: Insert

- Insert the node in normal BST manner
- Splay the node to the root

What if we didn't splay?

Student Activity - (circle your final answer)

Splay Operations: Remove

Now what?

Join(L, R):
given two trees such that (stuff in L) < (stuff in R), merge them:

Splay on the maximum element in L, then attach R
Delete Example

Splay Tree Summary

- All operations are in amortized $O(\log n)$ time
- Splaying can be done top-down; this may be better because:
 - only one pass
 - no recursion or parent pointers necessary
 - we didn’t cover top-down in class
- Splay trees are very effective search trees
 - Relatively simple
 - No extra fields required
 - Excellent locality properties: frequently accessed keys are cheap to find