Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees!

Options:
- `succ` from right subtree: `findMin(t.right)`
- `pred` from left subtree: `findMax(t.left)`

Now delete the original node containing `succ` or `pred`
- Leaf or one child case – easy!

Finally…

7 replaces 5

Original node containing 7 gets deleted

Balanced BST

Observation
- BST: the shallower the better!
- For a BST with \(n \) nodes
 - Average height is \(O(\log n) \)
 - Worst case height is \(O(n) \)
- Simple cases such as `insert(1, 2, 3, ..., n)` lead to the worst case scenario

Solution: Require a **Balance Condition** that
1. ensures depth is \(O(\log n) \) – strong enough!
2. is easy to maintain – not too strong!

Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes

2. Left and right subtrees of the root have equal *height*

3. Left and right subtrees of *every node* have equal number of nodes

4. Left and right subtrees of *every node* have equal *height*
The AVL Balance Condition

Left and right subtrees of every node have equal heights differing by at most 1.

Define: balance(x) = height(x.left) – height(x.right)

AVL property: −1 ≤ balance(x) ≤ 1, for every node x

• Ensures small depth
 – Will prove this by showing that an AVL tree of height h must have a lot of (i.e. O(2^h)) nodes
• Easy to maintain
 – Using single and double rotations

The AVL Tree Data Structure

Structural properties
1. Binary tree property
2. Balance property: balance of every node is between -1 and 1
Result: Worst case depth is O(log n)

Ordering property
– Same as for BST

Proving Shallowness Bound

Let S(h) be the min # of nodes in an AVL tree of height h
Claim: S(h) = S(h-1) + S(h-2) + 1
Solution of recurrence: S(h) = O(2^h) (like Fibonacci numbers)

Testing the Balance Property

We need to be able to:
1.
2.
3.

NULLs have height −1

An AVL Tree

AVL tree of height h=4 with the min # of nodes
AVL trees: find, insert

- **AVL find:**
 - same as BST find.

- **AVL insert:**
 - same as BST insert, except may need to “fix” the AVL tree after inserting new value.

AVL tree insert

Let \(x \) be the node where an imbalance occurs.

Four cases to consider. The insertion is in the:

1. left subtree of the left child of \(x \).
2. right subtree of the left child of \(x \).
3. left subtree of the right child of \(x \).
4. right subtree of the right child of \(x \).

Idea: Cases 1 & 4 are solved by a single rotation. Cases 2 & 3 are solved by a double rotation.

Bad Case #1

Insert(6)
Insert(3)
Insert(1)

Fix: Apply Single Rotation

AVL Property violated at this node (x)

Single Rotation:
1. Rotate between x and child

Height of tree before? Height of tree after? Effect on Ancestors?
Bad Case #2

Insert(1)
Insert(6)
Insert(3)

Fix: Apply Double Rotation
AVL Property violated at this node (x)
Double Rotation
1. Rotate between x’s child and grandchild
2. Rotate between x and x’s new child

Double rotation in general

W < h < X < e < Y < a < Z

Double rotation, step 1

Double rotation, step 2

Imbalance at node X

Single Rotation
1. Rotate between x and child

Double Rotation
1. Rotate between x’s child and grandchild
2. Rotate between x and x’s new child
Insert into an AVL tree: a b c d

Single and Double Rotations:
Inserting what integer values would cause the tree to need a:
1. single rotation?
2. double rotation?
3. no rotation?

Insertion into AVL tree
1. Find spot for new key
2. Hang new node there with this key
3. Search back up the path for imbalance
4. If there is an imbalance:
 - case #1: Perform single rotation and exit
 - case #2: Perform double rotation and exit
Both rotations keep the subtree height unchanged.
Hence only one rotation is sufficient!

Easy Insert
Insert(3)

Hard Insert (Bad Case #1)
Insert(33)
Hard Insert (Bad Case #2)

Insert(18)

Unbalanced?

How to fix?

Single Rotation (oops!)

Double Rotation (Step #1)

Double Rotation (Step #2)