
CSE 373 1

Collections & Implementaitons
Interfaces, Classes, Iterators,

JavaDoc, and Testing

CSE 373
Data Structures

Winter 2007

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

2

Agenda

• Review of containers (ADTs) and
implementations

• Running example – list collection with two
implementations: arrays and linked list

• Java best practices
› Interfaces and classes
› Iterators
› JavaDoc
› Junit testing

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

3

Types and Implementations

• Common collection types
› List, queue, stack, set, bag (multiset), priority

queue, map/dictionary, graph
• Variations: sorted or not (sets, maps, others)
• Implementation techniques

› Array, linked list (many variations), hashing, trees/
graphs (many, many variations), heaps

• Is it a collection or an implementation
technique? Might be either depending on
context, e.g., trees, graphs

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

4

Running Example: Lists

• An ordered collection, position matters
• Operations

› Constructor: create a properly initialized
empty list

› Modifications: clear, add/remove element
at end or at position, change element

› Queries: size, isEmpty, find/get element
› Processing: iterator

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

5

Java

• CSE373 is about data structures, not
Java, but…

• Java and the culture around it capture
many “best practices”, so…

• We’ll learn those practices and use
them when appropriate

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

6

Abstractions in Java

• Every interface and class defines a type
• Conventions

› Define every important type with an
interface

› Provide implementations as appropriate
› Client code should use the interface type

name instead of a specific implementation
unless there is a good reason not to

• Promotes generality and reusability

CSE 373 2

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

7

Today’s Example

• Interfaces: BasicList, BasicListIterator
› Specifies list operations essentially the same as

ones in Java collection classes
• (Except not using generics)

• Implementations: BasicArrayList,
BasicLinkedList
› Particular implementations using array and linked

lists as the backing store
• Sample code on the web

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

8

BasicArrayList Representation

• Representation is an array and count of
number of items currently stored

private Object[] items;
private int nItems;

• Invariant
• References to objects in the collection are

stored in items[0..nItems-1]
› Check invariants while coding – powerful

bug avoidance tool

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

9

Comments

• Java comments
// to end of line
/* c-style */
/** JavaDoc */

• All comments should capture “why” that is not
apparent from the “how” of the code

• JavaDoc – a particular style of comments that
can be automatically processed to create
documentation
› First used to document the standard Java libraries

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

10

JavaDoc

• Can put almost any html between /**
and */

• Place right before interface/class or
method definitions (and elsewhere if
wanted, but these are the main uses)

• Special tags to identify particular things
@author, @version – primarily for classes/

interfaces
@param, @return, @throws – primarily methods

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

11

Using JavaDoc

• Every class/interface should have a summary
JavaDoc comment at the beginning

• Every public method (visible outside the
class) should use JavaDoc to explain all
parameters, return values, exceptions that
are part of the method contract

• Exception: JavaDoc automatically copies
comments from interfaces to doc pages for
implementing classes – no need to duplicate

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

12

Exceptions

• Problem: a collection (or other object)
may be in a position to detect an error
but not know how best to handle it

• Solution: throw an exception object that
can be caught to handle the error or, if
not caught, will terminate the program

throw new IndexOutOfBoundsException();

CSE 373 3

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

13

Exception Guidelines

• Extensive hierarchy of exception types in
Java standard library – use one of these if
appropriate; define your own if library ones
don’t meet your needs

• Throw the most specific exception
appropriate to the error, e.g.,
IllegalArgumentException(…) instead of
Exception(…)

• Optional argument: string that provides detail
throw new IllegalArgumentException(“null not allowed…”);

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

14

Processing Collection Contents

• To process an ordered collection we
can access the elements by position

for (int k = 0; k < size; k++)
do something with things.get(k)

• But
› This may be inefficient if access by position

is not guaranteed to be fast
› Likely impossible (e.g., no get(k)) for

unordered collections (sets, maps)

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

15

Iterators – General Solution

• Every Java collection can provide
iterators that can be used to access its
contents

Iterator it = things.iterator();
while (it.hasNext()) {

Object item = it.next();
process item

}

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

16

Standard Iterator Methods

• Forward access
hasNext() – true if more elements
next() – return next element and advance

• Similar methods for reverse access in
some collections (e.g., lists)

• Modification
remove() – remove last item returned by

next/previous

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

17

Iterator Details
• Multiple iterators may be active on a single

collection at the same time
• Remove may only be used once per next/

previous, otherwise IllegalStateException
thrown

• Collection may not be modified while iteration
is in progress except by remove;
ConcurrentModificationException thrown if
next/remove/previous attempted after other
modification, including remove() in other
iterator(s)

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

18

Iterator Implementation

• Iterators typically need access to
internal, private implementation details
of associated collection class

• Clean solution: nest the iterator class
inside the container class
› Should be private – only outside access is

via the collection’s iterator() method that
returns a new instance

CSE 373 4

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

19

Second List Implementation

• Same interfaces: BasicList,
BasicListIterator

• Implementation: BasicLinkedList
› Implemented with a single-linked list as the

backing store
› Also appears “infinite” to clients

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

20

BasicLinkedList Nodes

• Each link in the list is an instance of the
following nested (local) class

private class Link {
public Object item; // list element referenced

// by this link
public Link next; // next link or null if this is the last

// link in the list

// constructor for convenience
public Link(Object item, Link next) { … }

}

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

21

List Representation

• We can implement a BasicLinkedList
with (only) the following instance
variable

private Link head; // reference to first link in
// the list, or null if the
// list is empty

› (Of course, additional instance data may
make it easier to do some things faster, but
this is enough to get started.)

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

22

Typical List Operation
public int indexOf(Object obj) {

// sequential search
int pos = 0; // position of current link in the list
Link p = head;
while (p != null) {
if (p.item.equals(obj)) {
return pos;

}
p = p.next;
pos++;

}
return -1;

}

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

23

Another List Operation
public int size() {

// count the number of links in the list
int nItems = 0;
Link p = head;
while (p != null) {
nItems++;
p = p.next;

}
return nItems;

}
• But wait!! This takes O(n) time!!! We should be able

to do better – and we can
1/10/2007 CSE 373 Wi 07 - Collections & Java

Best Practices
24

Speeding up size()

• Instead of counting the links, keep the list
length in a separate instance variable,
updated as needed

• A typical example of trading storage for
computation

• But how do we verify that we don’t break
anything if we make this change?
› And how do we know that things are ok to start

with?

CSE 373 5

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

25

Testing & Debugging

• Testing
› Verify that things work as expected
› Be able to reverify as software evolves

• Debugging
› Controlled experiment to discover what is

wrong and where

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

26

Testing Strategies

• Test “typical” cases – basic functional tests
› Do operations work properly on a non-empty list?

• Test “edge” cases
› Zero, one, many (empty list, single element, more,

…)
› Limit cases – what happens if a container is full
› Error cases – do things blow up as expected

(index out of bounds, other exceptions)
• Stress tests – harder, but needed in

production code – e.g., large workloads

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

27

Debugging Strategies

• Questions to ask
› What’s wrong?
› What’s working? How far do we get before

something fails?
› What are the symptoms?
› What changed since the last time it worked?

• Observing strategies
› Print statements(!)
› Debuggers – CAT scans for software
› Etc…

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

28

Unit Tests

• Idea: a collection of tests for individual
operations

• Effective testing: lots of small tests,
each of which checks something
specific
› Incremental building and testing
› Avoid “big-bang” tests as your only

strategy

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

29

Where to Put Tests

• Type them in using the programming
environment (tedious)

• Lots of test programs (better – don’t have to
retype – but still tedious to run repeatedly)

• Automated test frameworks
› Been around for a while, but popularized by

“extreme programming” / “agile development”
movements in recent years

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

30

JUnit

• Test framework for Java unit tests
• Implemented as classes that extend

Junit’s TestCase class
› Need to import junit.framework.*

• Key: test methods are named testXXXX
• Optional: setUp() method to create state

before each individual test is run
• More, but these are the core ideas

CSE 373 6

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

31

Inside Test Methods

• Inherited from TestCase; typical ones include
assertEquals(expected, actual)
assertEquals(expected, actual, delta) // doubles
assertTrue(condition)
assertFalse(condition)
assertNull(object)
assertNotNull(object)
Fail(“message”) // generate failure if control

// should not reach a particular point
// (example: expected exception not thrown)

1/10/2007 CSE 373 Wi 07 - Collections & Java
Best Practices

32

Unit Test Strategy

• Define tests before or as you write code
• Add and run tests each time you add

something small to the code
• Rerun tests to verify nothing broken

after changes
• If a bug is detected, create a test to

demonstrate it, fix it, then keep the test
forever as part of the test suite

