CSE 373, Autumn 2008, Assignment 2 Solutions

October 18, 2008

1. (8 points)
(a) $n=((795-(-10)) / 7)+1=116$

$$
\text { Sum }=(((-10)+795) 116) / 2=45530
$$

(b) Sum $=\left(256 *\left(1-(1 / 2)^{9}\right)\right) /(1-(1 / 2))=511$
(c) $\operatorname{Sum}=\left(1 *\left(3^{9}-1\right)\right) /(3-1)=9841$
(d) $\mathrm{Sum}=144 /(1-(1 / 4))=192$
2. (6 points)
(a) 10^{x+y+z}
(b) $x y$
(c) $1+2 \log _{2} x+3 \log _{2} y$
3. (7 points)

Basis Step:
$n=1,(1+1)=1 *(1+3) / 2=2$.
Induction hypothesis:
$\sum_{i=1}^{k}(i+1)=\frac{k(k+3)}{2}$, for some k.
Induction step:
$\sum_{i=1}^{k+1}(i+1)=\sum_{i=1}^{k}(i+1)+((k+1)+1)=\frac{k(k+3)}{2}+((k+1)+1)=$ $\frac{(k+1)((k+1)+3)}{2}$
This represents the proposition to be proved for the case $n=k+1$, and completes the proof.
4. (6 points)
(a) $\},\{0\},\{1\},\{0,1\}$
(b) $(0,0),(0,1),(1,0),(1,1)$
(c) $(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)$
5. (18 points)

	$R 1$	$R 2$	$R 3$	$R 4$	$R 5$	$R 6$
Reflexive	N	N	N	Y	Y	Y
Symmetric	Y	Y	Y	Y	N	Y
Transitive	Y	Y	N	Y	Y	Y
Antisymmetric	Y	Y	N	Y	Y	N
Equivalence Relation	N	N	N	Y	N	Y
Partial Order	N	N	N	Y	Y	N

6. (20 points, 15 for table entries and 5 for explanations)

	100	$2 n+5$	$\log _{2} n$	$5 n^{2}$	$n \log _{2} n$
$3 n+1$	Ω	Θ	Ω	O	O
$0.001 * 2^{n-10}$	Ω	Ω	Ω	Ω	Ω
$\log _{10} n^{n}$	Ω	Ω	Ω	O	Θ

$0.001 * 2^{n-10} \geq 5 n^{2}$ for $n \geq 33$ as can be verified by taking base 2 logs on both sides.
$\log _{10} n^{n}=n \log _{10} n=n \log _{2} n / \log _{2} 10=\Theta\left(n \log _{2} n\right)$
7. (20 points)
(a) (12 points) We will use stack $S a$ for enqueueing, $S b$ for dequeueing, and a boolean variable enQmode for storing the current operating mode. The methods are shown below.

```
boolean isEmpty(){
        if(Sa.isEmpty() && Sb.isEmpty())
            return true;
        else
            return false; }
void enqueue(Object obj){
    if(!enQmode){
            while(!Sb.isEmpty())
                Sa.push(Sb.pop()); }
        Sa.push(obj); }
Object dequeue(){
        if(enQMode){
            while(!Sa.isEmpty())
                Sb.push(Sa.pop()); }
            return Sb.pop(); }
```

(b) (4 points) The isEmpty method is constant time. The enqueue and dequeue operations take $O(m)$ time in the worst case where m is the current size of the queue. This is because we may need to move all m objects from one stack to another.
(c) (4 points) The total time complexity is $O\left(n^{2}\right)$. There are $2 n$ operations each of which takes $O(n)$ time.
8. (15 points)
(a) (5 points) The algorithm goes thru the following steps.
poly $=4$
poly $=4 * 3+8=20$
poly $=20 * 3+0=60$
poly $=60 * 3+1=181$
poly $=181 * 3+2=545$
(b) (5 points) Observe that the polynomial $a_{0}+a_{1} x+a_{2} x^{2}+\ldots$ can be rewritten as $a_{0}+x\left(a_{1}+x\left(a_{2}+\ldots\right.\right.$ by repeatedly factoring out x. The algorithm computes the polynomial using this equivalent form.
(c) (5 points) The running time is $\Theta(n)$.

