
1

B-Trees

CSE 373
Data Structures

Winter 2007

B-trees 2

Readings

• Reading Chapter 4
› Section 4.7

B-trees 3

Data Layout on Disk

• Track: one ring
• Sector: one pie-shaped piece.
• Block: intersection of a track and a sector.

B-trees 4

Disk Block Access Time

Seek time = combination of
Time for the disk head to move to the correct track.
Time for the beginning of the correct sector to spin round

to the head. (Some authors use “latency” as the term for this component,
or they use latency to refer to all of what we are calling seek time.)

Transfer time =
Time to read or write the data.
(Approximately the time for the sector to spin by the head).

For a 7200 RPM hard disk with 8 millisec seek time,
average access time for a block is about 12 millisec.

B-trees 5

Considerations for Disk Based
Dictionary Structures

Use a disk-based method when the dictionary is too big to
fit in RAM at once.

Minimize the expected or worst-case number of disk
accesses for the essential operations (put, get, remove).

Keep space requirements reasonable -- O(n).

Methods based on binary trees, such as AVL search trees,
are not optimal for disk-based representations. The
number of disk accesses can be greatly reduced by using
m-way search trees.

B-trees 6

B-trees

• Invented in 1972 by
Rudolf Bayer (-) and Ed McCreight(-)

2

B-trees 7

• Example: B-tree of order 3 has 2 or 3
children per node

• Search for 8

Beyond Binary Search Trees:
Multi-Way Trees

13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

B-trees 8

B-Trees are multi-way search trees commonly used in database
systems or other applications where data is stored externally on
disks and keeping the tree shallow is important.

A B-Tree of order M has the following properties:
1. The root is either a leaf or has between 2 and M children.
2. All nonleaf nodes (except the root) have between ⎡M/2⎤

and M children.
3. All leaves are at the same depth.

All data records are stored at the leaves.
Internal nodes have “keys” guiding to the leaves.
Leaves store between ⎡M/2⎤ and M data records.

B-Trees

B-trees 9

B-Tree Details

Each (non-leaf) internal node of a B-tree has:
› Between ⎡M/2⎤ and M children.
› up to M-1 keys k1 < k2 < ... < kM-1

Keys are ordered so that:
k1 < k2 < ... < kM-1

kM-1. ki-1 kik1

B-trees 10

B-tree alternate definitions

• There are several definitions
• What was in the previous slide is the

original def.
• Different textbooks have slightly

different ones

B-trees 11

Properties of B-Trees

Children of each internal node are "between" the items in that node.
Suppose subtree Ti is the ith child of the node:

all keys in Ti must be between keys ki-1 and ki

i.e. ki-1 ≤ Ti < ki
ki-1 is the smallest key in Ti
All keys in first subtree T1 < k1
All keys in last subtree TM ≥ kM-1

k1

TTii

. kki-1 kkii

TTMTT11

kkM-1

.

B-trees 12

Example: Searching in B-trees

13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

• B-tree of order 3: also known as 2-3 tree (2 to 3
children)

• Examples: Search for 9, 14, 12
• Note: If leaf nodes are connected as a Linked List, B-

tree is called a B+ tree – Allows sorted list to be
accessed easily

- means empty slot

3

B-trees 13

Inserting into B-Trees
• Insert X: Do a Find on X and find appropriate leaf node

› If leaf node is not full, fill in empty slot with X
• E.g. Insert 5

› If leaf node is full, split leaf node and adjust parents up to root
node

• E.g. Insert 9 13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

B-trees 14

After insert of 5 and 9

3 4 5 6 7 8 9 11 12 13 14 17 18

6 - 11 -
17 -

11 13

B-trees 15

Deleting From B-Trees

• Delete X : Do a find and remove from leaf
› Leaf underflows – borrow from a neighbor

• E.g. 11
› Leaf underflows and can’t borrow – merge nodes, delete

parent
• E.g. 17 13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

B-trees 16

Deleting case 1
“8” was borrowed from neighbor. Note the change in the

parent

13:-

6:8

3 4 6 7 8 12 13 14 17 18

17:-

B-trees 17

Deleting Case 2

13 14 188 12

13 -

3 4 6 7

6 -

8 -

B-trees 18

Run Time Analysis of B-Tree
Operations

• For a B-Tree of order M
› Each internal node has up to M-1 keys to search
› Each internal node has between ⎡M/2⎤ and M children
› Depth of B-Tree storing N items is O(log ⎡M/2⎤ N)

• Find: Run time is:
› O(log M) to binary search which branch to take at each

node. But M is small compared to N.
› Total time to find an item is O(depth*log M) = O(log N)

4

B-trees 19

Summary of Search Trees

• Problem with Binary Search Trees: Must keep tree
balanced to allow fast access to stored items

• AVL trees: Insert/Delete operations keep tree balanced
• Splay trees: Repeated Find operations produce

balanced trees
• Multi-way search trees (e.g. B-Trees): More than two

children
› per node allows shallow trees; all leaves are at the

same depth
› keeping tree balanced at all times

