Mathematical Background

CSE 373
Data Structures

Mathematical Background

» Today, we will review:
> Logs and exponents
> Series
> Recursion

> Motivation for Algorithm Analysis

5 January 2007 CSE 373 - Math Background

Powers of 2

* Many of the numbers we use in Computer
Science are powers of 2

« Binary numbers (base 2) are easily
represented in digital computers
> each "bit"isaOoral
> 20=1, 21=2, 22=4, 23=8, 24=16,..., 210=1024 (1K)
> , an n-bit wide field can hold 2" positive integers:

e 0<k<2M1 0000000000101011

5 January 2007 CSE 373 - Math Background 3

Unsigned binary numbers

 For unsigned numbers in a fixed width

field
> the minimum value is 0

> the maximum value is 2"-1, where n is the

number of bits in thelfield
. I=n-— i
> The value |szi:0 a2

 Each bit position represents a power of

2witha,= Oora;= 1

5 January 2007 CSE 373 - Math Background

Logs and exponents

« Definition: log, x =y means x = 2¥
> 8=2%s0log,8=3
> 65536= 216, 50 l0g,65536 = 16

« Notice that log,x tells you how many bits
are needed to hold x values
> 8 bits holds 256 numbers: 0 to 28-1 = 0 to 255
> l0og,256 = 8

5 January 2007 CSE 373 - Math Background 5

T
14 |
f
12 [y P
] ,./.
10 =
-~
~
8 L
-
.//
e
] -
e ¥ = logyx
2
a A
] 2 4 3] 10 12

X, 2¢and log,x

x = 0:.1:4

y = 2.°%
plot(x,y,"r)
hold on
plot(y.x,"g")
plot(y,y,"b%)

1000 /,
/'/.
By ¥ 2 o
00 o
400 g
~
y x = 0:10
20 y = 2.7
plot(x,y,"r*)
_,/ ¥ = logyx hold on
[T —TT T S T ——rTY plot(y,x,"g")
1] 200 4 I;I(TI a0 1000 1200 plot(y.y. b")

2* and log,x

Floor and Ceiling

LXJ Floor function: the largest integer < X

|27]=2 |-27]=-3 [2]=2

|_X-| Ceiling function: the smallest integer > X
[23]=3 [-23]=-2 [2]=2

5 January 2007 CSE 373 - Math Background 8

Facts about Floor and Ceiling

1. X-1<|X]<Xx
2. X<[X]<x+1
3. [n/2]+[n/2]=n ifnisaninteger

5 January 2007 CSE 373 - Math Background 9

Properties of logs (of the
mathematical kind)

» We will assume logs to base 2 unless
specified otherwise

* log AB=log A +log B
> A=2l°9,A and B=2'09,B
> AB = 2/09,A ¢ 2l0g,B = 2log,A+log,B

> so log,AB = log,A + log,B

> [note: log AB # log Aslog B]

5 January 2007 CSE 373 - Math Background 10

Other log properties

* logA/B=logA-logB
* log (AB) =B log A
* loglog X<log X< Xforall X>0
> log log X =Y means 22 =X
> log X grows slower than X
« called a “sub-linear” function

5 January 2007 CSE 373 - Math Background 11

Alogis alogis alog

» Any base x log is equivalent to base 2 log

within a constant factor
log,B =log,B
B= 2|OQQB subsmuuu‘n/®ug)‘B x10g,B-p

(Zlogzx)|0ng _ Hlog;8 by def. of logs

X = 2Iogzx
logxlog,B _ log;8

log,x log,B =log,B

_log,B
log,x

log,B

5 January 2007 CSE 373 - Math Background 12

Arithmetic Series

N
o S(N)=1+2+..+N=Yi
i=1

e The sumis

> S(1)=1

> S(2)=1+2=3

> §(3)=1+2+3=6

N
. Zi = N(N+1) Why is this formula useful

i=1 2 when you analyze algorithms?
5 January 2007 CSE 373 - Math Background 13

Algorithm Analysis

* Consider the following program
segment:

x:= 0;

for i =1 to N do

for j =1 to i do
X =X + 1;

* What is the value of x at the end?

5 January 2007 CSE 373 - Math Background 14

Analyzing the Loop

Total number of times x is incremented
is the number of “instructions” executed

_ N
= 1+2+3+...:Zi:w
i=1

You've just analyzed the program!

> Running time of the program is proportional
to N(N+1)/2 for all N

> O(N?)

5 January 2007 CSE 373 - Math Background 15

Analyzing Mergesort

Mergesort(p : node pointer) : node pointer {
Case {

p = null : return p; //no elements

p.next = null : return p; //one element

else
d : duo pointer; // duo has two fields first,second
d = Split(p);
return Merge(Mergesort(d.first),Mergesort(d.second));
}
b T(n)is the time to sort nitems.
T(0), T(1)<c
T(n) < T(n/2)+ T(n/2])+dn
5 January 2007 CSE 373 - Math Background 16

Mergesort Analysis

Upper Bound

T(n) <2T(n/2) +dn Assuming nis a power of 2
<2(2T(n/4) +dn/2) + dn
=4T(n/4) +2dn
< 4(2T(n/8) +dn/4) +2dn
=8T(n/8) +3dn

<2T(n/2%) +kdn

=nT(1) +kdn ifn=2% n=2k=logn
<cn+dnlog,n

=0O(n logn)

5 January 2007 CSE 373 - Math Background 17

Recursion Used Badly

* Classic example: Fibonacci numbers F,

01,1,23,58,13,21, .. 00o

> F, =0, F, =1 (Base Cases)
> Rest are sum of precedingtwo "
F,=F, t+tF., (n>1) Fibonacci (1170-1250)

5 January 2007 CSE 373 - Math Background 18

Recursion

* A method calling itself, directly or
indirectly

» Works because of how method calls are
processed anyway

> A stack holds parameters and local
variables for each invocation

5 January 2007 CSE 373 - Math Background 19

Recursive Method Outline

« One or more base cases
« One or more recursive cases

» Recursive cases must get “closer” to a
base case

» The process must eventually terminate

5 January 2007 CSE 373 - Math Background 20

Recursion Practice

[** Return base®x?
exp>=0
*/
double power(double base, int exp);

5 January 2007 CSE 373 - Math Background 21

Recursion vs lteration

* A recursive algorithm can always be
expressed iteratively, and vice versa

» Recursion is often more compact and
elegant

« lteration is often more efficient

* Recursion is natural when the data
structure is recursive

5 January 2007 CSE 373 - Math Background 22

Recursion Practice

/** Return the largest value in a non-
empty array

*/

double findMax(double[] nums);

5 January 2007 CSE 373 - Math Background 23

Kickoff: Common Trick

double findMax(double[] nums) {
return helper(nums, 0);

/** Find the largest value starting at position
"start" of a non-empty array. */
double helper (double[] nums, int start);

5 January 2007 CSE 373 - Math Background 24

Recursive Procedure for
Fibonacci Numbers

fib(n : integer): integer {
Case {
n <0 : return O;
n=1: return 1;
else : return fib(n-1) + fib(n-2);
}
3

« Easy to write: looks like the definition of F,
¢ But, can you spot the big problem?

5 January 2007 CSE 373 - Math Background

25

Recursive Calls of Fibonacci
Procedure

N)

N1 @\

2 @ | @

M @D B)
2r W Y'Y W
» Re-computes fib(N-i) multiple times!

5 January 2007 CSE 373 - Math Background 26

Fibonacci Analysis
Lower Bound

T(n) is the time to compute fib(n).
T(0),T(1)>1
T(n)>T(n-1)+T(n-2)

It can be shown by induction that T(n) > ¢ "2

where
145 _
2

P 1.62

5 January 2007 CSE 373 - Math Background

27

Iterative Algorithm for
Fibonacci Numbers

Fib_iter(n : integer): integer {
Fib0, fibl, fibresult, i : integer;
Fib0 := 0; fibl = 1;
case {_
n < 0 : fibresult :
n =1 : fibresult :
else :
for i =2 to n do
Fibresult := fib0 + fibl;
fibo := fibl;
Fibl := fibresult;
3

return fibresult;

0;
1:

5 January 2007 CSE 373 - Math Background 28

Recursion Summary

¢ Recursion may simplify programming, but
beware of generating large numbers of
calls
> Function calls can be expensive in terms of

time and space

« Be sure to get the base case(s) correct!

« Each step must get you closer to the base
case

5 January 2007 CSE 373 - Math Background

29

Motivation for Algorithm
Analysis

* Suppose you are
given two algorithms
A and B for solving a ,, .. Ta
problem

¢ The running times .
TA(N) and Tg(N) of A~ P
and B as a function of .

Run Tim

input size N are given %
Input Size N
Which is better?

5 January 2007 CSE 373 - Math Background 30

More Motivation
 For large N, the running time of A and B

Asymptotic Behavior

* The “asymptotic” performance as N — oo,
regardless of what happens for small input
sizes N, is generally most important .

» Performance for small input sizes may
matter in practice, if you are sure that small
N will be common forever .

* We will compare algorithms based on how
they scale for large values of N.

5 January 2007 CSE 373 - Math Background 32

T

/ |
. Now which
E TA(N) = 50N algorithm would
c mm
& e you choose?

- Tg(N) = N?

- /

,-//
Input Size N
5 January 2007 CSE 373 - Math Background 31

¢ Mainly used to express upper bounds on time
of algorithms. “n” Is the size of the input.

« Definition: Let T and f be functions of the
natural numbers. T(n) is O(f(n)) if there are
constants ¢ and n, such that

T(n) <c f(n) for all n > n,.
e 2*nis O(n)
e 2+nis O(n)
» 10000n + 10 nlog, n is O(n log n)
» .00001 n? is not O(n log n)

5 January 2007 CSE 373 - Math Background 33

Big O Informality

« Instead of saying "T is O(f)" people
often say things like
> "T is Big O of f*
> T = 0(f)"
> "T is bounded by f", etc.

 Be careful how you understand "T =
O(f)". This is not an equation!

5 January 2007 CSE 373 - Math Background 34

Why Order Notation

» The difference in performance between
two computers is generally a constant
multiple (roughly).
> The ny in our definition takes that into

account

* In asymptotic performance (n —x) the
low order terms are "dominated” by the
higher order terms

5 January 2007 CSE 373 - Math Background 35

Some Basic Time Bounds

* In order best to worst:

> Logarithmic time is O(log n)

> Linear time is O(n)

> O(nlog n)

> Quadratic time is 0(n?)

> Cubic time is O(n3)

> Polynomial time is O(nk) for some k.

> Exponential time is O(c") for some ¢ > 1.
« Advice: learn these names and their order!

5 January 2007 CSE 373 - Math Background 36

Kinds of Analysis

« Asymptotic — uses order notation, ignores constant
factors and low order terms.

« Upper bound vs. lower bound

* Worst case — time bound valid for all inputs of length
n.

« Average case — time bound valid on average —
requires a distribution of inputs.

* Amortized — worst case time averaged over a
sequence of operations.

¢ Others — best case, common case (80%-20%) etc.

5 January 2007 CSE 373 - Math Background 37

What to Analyze

« Execution time
> Number of instructions executed

> Number of some particular operation
executed

« Example: for sorting algorithms, we might just
count the number of comparisons made

* Memory

» Disc accesses, network transfer time,
power, etc.

5 January 2007 CSE 373 - Math Background 38

