Priority Queues & Binary Heaps

CSE 373
Data Structures
Spring 2007

Readings

» Chapter 6
> Section 6.1-6.4

Binary Heaps 2

FindMin Problem

* Quickly find the smallest (or highest priority)
item in a set
« Applications:
> Operating system needs to schedule jobs
according to priority instead of FIFO

> Event simulation (bank customers arriving and
departing, ordered according to when the event
happened)

> Find student with highest grade, employee with
highest salary etc.

> Find “most important” customer waiting in line

Binary Heaps 3

Priority Queue ADT

 Priority Queue can efficiently do:
> FindMin()
« Returns minimum value but does not delete it
> DeleteMin()
« Returns minimum value and deletes it
> Insert (k)
« Or Insert (k,x) where k is the key and x the value. In all

algorithms the important part is the key, a “comparable”
item. We'll skip the value.

> size() and isEmpty()

Binary Heaps 4

List implementation of a Priority
Queue

» What if we use unsorted lists:
> FindMin and DeleteMin are O(n)
« In fact you have to go through the whole list
> Insert(k) is O(1)
* What if we used sorted lists

> FindMin and DeleteMin are O(1)

* Be careful if we want both Min and Max
(circular array or doubly linked list)

> Insert(k) is O(n)

Binary Heaps 5

BST implementation of a Priority
Queue

« Worst case (degenerate tree)
> FindMin, DeleteMin and Insert (k) are all)
« Best case (completely balanced BST)

O(log
> FindMin, DeleteMin and Insert (k) are all n)

* Balanced BSTs O(log
> FindMin, DeleteMin and Insert (k) are all n)

Binary Heaps 6

Better than a speeding BST

» Can we do better than Balanced Binary
Search Trees?

» Very limited requirements: Insert,
FindMin, DeleteMin. The goals are:
> FindMin is O(1)
> Insert is O(log N)
> DeleteMin is O(log N)

Binary Heaps

Binary Heaps

« Abinary heap is a binary tree (NOT a BST) that
satisfies

> Structure property:
« Complete - the tree is completely filled except possibly the
bottom level, which is filled from left to right

> Heap order property
« every node is less than or equal to its children
« orevery node is greater than or equal to its children
* The root node is always the smallest node
> or the largest, depending on the heap order
> All nodes are in use except for possibly the right end

of the bottom row
Binary Heaps

8

Structure property

* A binary heap is a complete tree

Binary Heaps

Heap order property

* A heap provides limited ordering information
» Each path is sorted, but the subtrees are not
sorted relative to each other
> A binary heap is NOT a binary search tree

Binary Heap vs Binary Search
Tree

Binary Heap Binary Search Tree

(o)

@ @
& @

Parent is less than both Parent is greater than left

left and right children child, less than right child
11

min value

Binary Heaps

(D
(2) & o @
@ (® @ ®
©
a @ These are all valid binary heaps (minimum) @ 9 0
Binary Heaps 10
Examples
@ @
complete tree,
heap order is "max" \
9 - not complete
@ ®
@ ©®
oompletetreel,‘ ! complete tree, but min
heap order is"min' heap order is broken

Binary Heaps 12

Array Implementation of
Heaps

* Root node = A[1]

* Children of A[i] = A[2i], A[2i + 1]

» Keep track of current size N (humber
of nodes)

FindMin and DeleteMin

* FindMin: Easy!

> Return root value A[1]

> Runtime = O(1) (4)

@,

» DeleteMin:

> Delete (and return) value
at root node

Binary Heaps 14

T~ 2 9 3
Rl Rl
we [- 2[ale][7]5] | | @ ®
index 0 1 2 3 4 5 6 7 0 6
I 4 5
N=5
Binary Heaps 13
DeleteMin

» Delete (and return)
value at root node

Binary Heaps

15

Maintain the Structure
Property

* We now have a “Hole” at
the root
> Need to fill the hole with

another value

* When we get done, the
tree will have one less
node and must still be
complete

Binary Heaps

Maintain the Heap Property

» The last value has lost its
node 14
> we need to find a new |

place for it

* We can do a simple
insertion sort - like
operation to find the
correct place for it in the
tree

Binary Heaps

17

DeleteMin: Percolate Down

» Keep comparing with children A[2i] and A[2i + 1]

» Copy smaller child up and go down one level

« Done if both children are = item or reached a leaf node
* What is the run time? o(jog n)

Binary Heaps 18

Percolate Down

PercDown(i:integer, x :integer): {
/1 Nis the nunber of entries in heap//

DeleteMin: Run Time Analysis

* Run time is O(depth of heap)
» A heap is a complete binary tree

» Depth of a complete binary tree of N
nodes?

> depth = Llog,(N)/
* Run time of DeleteMin is O(log N)

Binary Heaps 20

j @ integer;
Case{
2i > N: Ali] :=x; //at bottonm/
2i = N: if Al2i] < x then
Ali] 1= A[2i]; Al2i] 1= x;
else Ali] 1= x;
2i < N: if Al2i] < A[2i+1] then j := 2i;
else j = 2i+1;
if Alj] < x then
Ali] = Alj]; Percbown(j,Xx);
else Ali] 1= x;
1}
Binary Heaps 19
Insert

» Add a value to the tree

« Structure and heap
order properties must
still be correct when we
are done

Binary Heaps

21

Maintain the Structure
Property

» The only valid place for
a new node in a
complete tree is at the
end of the array

* We need to decide on
the correct value for the
new node, and adjust
the heap accordingly

Binary Heaps 22

Maintain the Heap Property Insert: Percolate Up

* The new value goes where?

» We can do a simple insertion
sort operation on the path from
the new place to the root to find

« Start at last node and keep comparing with parent A[i/2]
« If parent larger, copy parent down and go up one level
« Done if parent < item or reached top node A[1]

* Run time?

Binary Heaps 23 Binary Heaps 24

Insert: Done

* Run time?

Binary Heaps

25

PercUp

Per cUp(i integer, x : integer): {
if i =1then Al1] := X
else if Ali/2] < x then
Ali]l 1=x
el se
Ali] = Ail2];
Percup(i/2,x);

Binary Heaps 26

Sentinel Values

« Every iteration of Insert needs to test:
> if it has reached the top node A[1]
> if parent < item

« Can avoid first test if A[0] contains a very
large negative value

> sentinel -o0 < item, for all items &
» Second test alone always stops at top E10) ;

vaue

- 2/3]8][7]4]10/9]12]9]6]5] [|
indx 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Binary Heaps

27

Binary Heap Analysis

« Space needed for heap of N nodes: O(MaxN)

An array of size MaxN, plus a variable to store the
size N, plus an array slot to hold the sentinel

> Time

FindMin: O(1)

DeleteMin and Insert: O(log N)

BuildHeap from N inputs : O(N) (forthcoming)

v

v

v

v

Binary Heaps 28

