FindMin Problem

- Quickly find the smallest (or highest priority) item in a set
- Applications:
 - Operating system needs to schedule jobs according to priority instead of FIFO
 - Event simulation (bank customers arriving and departing, ordered according to when the event happened)
 - Find student with highest grade, employee with highest salary etc.
 - Find “most important” customer waiting in line

Priority Queue ADT

- Priority Queue can efficiently do:
 - FindMin()
 - Returns minimum value but does not delete it
 - DeleteMin()
 - Returns minimum value and deletes it
 - Insert (k)
 - Or Insert (k,x) where k is the key and x the value. In all algorithms the important part is the key, a “comparable” item. We’ll skip the value.
 - size() and isEmpty()

List implementation of a Priority Queue

- What if we use unsorted lists:
 - FindMin and DeleteMin are \(O(n) \)
 - In fact you have to go through the whole list
 - Insert(k) is \(O(1) \)
- What if we used sorted lists:
 - FindMin and DeleteMin are \(O(1) \)
 - Be careful if we want both Min and Max (circular array or doubly linked list)
 - Insert(k) is \(O(n) \)

BST implementation of a Priority Queue

- Worst case (degenerate tree)
 - FindMin, DeleteMin and Insert (k) are all \(O(n) \)
- Best case (completely balanced BST)
 - FindMin, DeleteMin and Insert (k) are all \(O(\log n) \)
- Balanced BSTs
 - FindMin, DeleteMin and Insert (k) are all \(O(\log n) \)
Better than a speeding BST

- Can we do better than Balanced Binary Search Trees?
- Very limited requirements: Insert, FindMin, DeleteMin. The goals are:
 - FindMin is $O(1)$
 - Insert is $O(\log N)$
 - DeleteMin is $O(\log N)$

Binary Heaps

- A binary heap is a binary tree (NOT a BST) that satisfies
 - Structure property:
 - Complete: the tree is completely filled except possibly the bottom level, which is filled from left to right
 - Heap order property
 - every node is less than or equal to its children
 - or every node is greater than or equal to its children
 - The root node is always the smallest node
 - or the largest, depending on the heap order
 - All nodes are in use except for possibly the right end of the bottom row

Structure property

- A binary heap is a complete tree

Binary Heap vs Binary Search Tree

<table>
<thead>
<tr>
<th>Binary Heap</th>
<th>Binary Search Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>94</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>min value</td>
<td>min value</td>
</tr>
</tbody>
</table>

Parent is less than both left and right children

Parent is greater than left child, less than right child

Examples

- Complete tree, heap order is "min"
- Complete tree, heap order is "max"
- Not complete

Binary Heap

- Complete tree, but min heap order is broken
Array Implementation of Heaps

- Root node = A[1]
- Keep track of current size N (number of nodes)

FindMin and DeleteMin

- FindMin: Easy!
 › Return root value A[1]
 › Run time = O(1)
- DeleteMin:
 › Delete (and return) value at root node

DeleteMin

- Delete (and return) value at root node

Maintain the Structure Property

- We now have a “Hole” at the root
 › Need to fill the hole with another value
- When we get done, the tree will have one less node and must still be complete

Maintain the Heap Property

- The last value has lost its node
 › We need to find a new place for it
- We can do a simple insertion sort - like operation to find the correct place for it in the tree

DeleteMin: Percolate Down

- Copy smaller child up and go down one level
- Done if both children are ≥ item or reached a leaf node
- What is the run time? O(log n)
Percolate Down

```plaintext
PercDown(i:integer, x :integer): { // N is the number of entries in heap
  j : integer;
  Case{
    2i > N : A[i] := x; // at bottom
    2i = N : if A[2i] < x then
      else A[i] := x;
      else j := 2i+1;
      if A[j] < x then
        A[i] := A[j]; PercDown(j, x);
      else A[i] := x;
  }
}
```

DeleteMin: Run Time Analysis

- Run time is $O(\text{depth of heap})$
- A heap is a complete binary tree
- Depth of a complete binary tree of N nodes?
 - $\text{depth} = \lceil \log_2(N) \rceil$
- Run time of DeleteMin is $O(\log N)$

Insert

- Add a value to the tree
- Structure and heap order properties must still be correct when we are done

Maintain the Structure Property

- The only valid place for a new node in a complete tree is at the end of the array
- We need to decide on the correct value for the new node, and adjust the heap accordingly

Maintain the Heap Property

- The new value goes where?
- We can do a simple insertion sort operation on the path from the new place to the root to find the correct place for it in the tree

Insert: Percolate Up

- Start at last node and keep comparing with parent $A[i/2]$
- If parent larger, copy parent down and go up one level
- Done if parent \leq item or reached top node $A[1]$
- Run time?
Insert: Done

PercUp

PercUp(i : integer, x : integer): {
if i = 1 then A[1] := x
else if A[i/2] < x then
 A[i] := x;
else
 A[i] := A[i/2];
Percup(i/2,x);
}

Sentinel Values

• Every iteration of Insert needs to test:
 • if it has reached the top node A[1]
 • if parent ≤ item
• Can avoid first test if A[0] contains a very large negative value
 • sentinel > item, for all items
• Second test alone always stops at top

Binary Heap Analysis

• Space needed for heap of N nodes: O(MaxN)
 › An array of size MaxN, plus a variable to store the size N, plus an array slot to hold the sentinel
• Time
 › FindMin: O(1)
 › DeleteMin and Insert: O(log N)
 › BuildHeap from N inputs : O(N) (forthcoming)