
Introduction and Course Overview
CSE 373

Yang Li
University of Washington

Autumn 2007

September 26, 2007

Data Structures & Algorithms

Sep 26, 2007 CSE 373 au07 - Introduction 2

Staff

• Instructor
› Yang Li

(yangli@cs.washington.edu)

• TAs
› Cam Thach Nguyen

(ncthach@cs.washington.edu)
› Sierra Michels-Slettvet

(sierra@cs.washington.edu)

Sep 26, 2007 CSE 373 au07 - Introduction 3

Yang Li

• Currently a Research Associate at UW CSE
› Ubiquitous Computing & Pen-based Computing
› http://www.cs.washington.edu/homes/yangli

• Previously a Postdoc at UC Berkeley EECS
› Ubiquitous Computing & Pen-based Computing

• Acquired a PhD from Chinese Academy of Sciences
› Computer Science
› Pen-based Computing

Sep 26, 2007 CSE 373 au07 - Introduction 4

Data Structures: Why?

We need clever ways to organize
information in order to enable
efficient computation.

Sep 26, 2007 CSE 373 au07 - Introduction 5

Data Structures: What & How?

Using Appropriate Abstractions is the Key!

Sep 26, 2007 CSE 373 au07 - Introduction 6

Course Website

• http://www.cs.washington.edu/373

• All the information for the course
› Contact information & announcements
› Assignments
› Schedules & lectures
› Links to discussion boards and mailing lists
› Handouts
› Links to computing resources

Sep 26, 2007 CSE 373 au07 - Introduction 7

Office Hours

• Yang Li – CSE212 (Allen Center)
› Monday & Wednesday, 2:00-3:00
› Or by appointment

• Cam Thach Nguyen – CSE218
› Tuesday & Thursday, 9:30 to 10:20

• Sierra Michels-Slettvet – TBA
› Thursday, 3:30

Sep 26, 2007 CSE 373 au07 - Introduction 8

CSE 373 E-mail List

• Automatically subscribed if you are
registered for the course
› Otherwise, subscribe via the class web page

• Use
› Posting announcements by instructor & TAs

Sep 26, 2007 CSE 373 au07 - Introduction 9

CSE 373 Discussion Board

• Subscribe through the course website

• Use
› General discussion of class contents
› Hints and ideas about assignments

• but not detailed code or solutions
› Other topics related to the course

Sep 26, 2007 CSE 373 au07 - Introduction 10

Computer Lab

• College of Arts & Sciences Instructional
Computing Lab
› http://depts.washington.edu/aslab/

• Programming language: Java 5 or 6

Sep 26, 2007 CSE 373 au07 - Introduction 11

Programming Tools

• Eclipse
› The best IDE I’ve ever used!
› Or whatever editor that allow you to type in code!

• Stay away from code-generating “wizards”

• Most tools are freely available on the web
› Easy to set up at home

Sep 26, 2007 CSE 373 au07 - Introduction 12

Textbook

Data Structures and
Algorithm Analysis in Java,
Mark Weiss, 2nd edition,
Addison-Wesley, 2007.

Sep 26, 2007 CSE 373 au07 - Introduction 13

Grading & Estimated Breakdown

• Two Midterms 30% (15% each)

• Final 20%
› 10:30-12:20 pm, Wednesday, Dec 12

• Assignments 50%
› Weights differ to account for difficulty of assignments
› A mix of written exercises and programming projects

Sep 26, 2007 CSE 373 au07 - Introduction 14

Deadlines & Late Policy

• Assignments generally due Thursday evenings
› Turnin via the web
› Exact times/dates will be given for each assignment

• Late policy: NONE
› As in, no late assignments accepted
› Talk to the instructor if something truly outside your

control causes problems here

Sep 26, 2007 CSE 373 au07 - Introduction 15

Academic (Mis-) Conduct

• You are expected to do your own work
› Exceptions will be clearly announced

• Misconducts will be penalized
› Sharing solutions
› Doing work for or accepting work from others

Integrity is a fundamental principle in the academic
world (and elsewhere) – we and your classmates trust
you; don’t abuse that trust

Sep 26, 2007 CSE 373 au07 - Introduction 16

Policy on Collaboration

“Gilligan’s Island” rule

› You may discuss problems with your classmates to your
heart's content.

› After you have solved a problem, discard all written notes
about the solution.

› Go watch TV for a ½ hour (or more). Preferably Gilligan's
Island.

› Then write your solution.

Sep 26, 2007 CSE 373 au07 - Introduction 17

Homework for Today

• Assignment #1
› Posted in the next day or so

• Reading in Weiss
› Chapter 1 – Mathematics and Java
› Chapter 2 – Algorithm Analysis
› Chapter 3 – Lists, Stacks, & Queues

Sep 26, 2007 CSE 373 au07 - Introduction 18

Class Overview

• Be exposed to a variety of data structures

• Know when to use them

• Apply mathematical techniques for analysis

• Practice implementing them by writing programs

Goal:
Be able to make good design choices as a developer,
project manager, or system customer

Sep 26, 2007 CSE 373 au07 - Introduction 19

Good Designs

Program design depends crucially on how
data is structured for use by the program

› Speed of program may dramatically decrease
or increase

› Memory used may increase or decrease
› Implementation of some operations may

become easier or harder
› Debugging may be become easier or harder

Sep 26, 2007 CSE 373 au07 - Introduction 20

Course Topics

• Introduction to Algorithm Analysis

• Lists, Stacks, Queues (mostly review)

• Search Algorithms & Trees

• Hashing & Heaps

• Sorting

• Disjoint Sets

• Graph Algorithms

Sep 26, 2007 CSE 373 au07 - Introduction 21

Picking the best
Data Structure for the job

• The data structure you pick needs to support the
operations you need

• Ideally it supports the operations you will use
most often in an efficient manner

• Examples of operations
› List with operations insert and delete
› Stack with operations push and pop

Sep 26, 2007 CSE 373 au07 - Introduction 22

Background

• Prerequisite is CSE 143
• Topics you should have a basic understanding of

› Variables, conditionals, loops, methods (functions),
fundamentals of defining classes and inheritance,
arrays, single linked lists, simple binary trees,
recursion, some sorting and searching algorithms,
basic algorithm analysis, e.g., O(n) vs. O(n2) and
similar things.

• We can fill in gaps as needed, but if any topics
are new, plan on some extra studying

Sep 26, 2007 CSE 373 au07 - Introduction 23

Terminology
• Abstract Data Type (ADT)

› Mathematical description of a computational object
› Useful building block

• Algorithm
› A high level, language independent, description of a step-by-

step process

• Data structure
› A specific family of algorithms for implementing an abstract

data type

• Implementation of data structure
› A specific implementation in a specific language

Sep 26, 2007 CSE 373 au07 - Introduction 24

A Terminology Example

• A stack is an abstract data type (ADT)
› Supporting push, pop and isEmpty operations

• A stack data structure
› Use an array or a linked list
› Or anything that can hold data

• One stack implementation
› See java.util.Stack

Sep 26, 2007 CSE 373 au07 - Introduction 25

Why Algorithm Analysis

• Correctness
› Does the algorithm do what is intended

• Performance
› What is the running time of the algorithm
› How much storage does it consume

• Choose among different data structures
› All correctly solves a given task
› Which should we use? When?

Sep 26, 2007 CSE 373 au07 - Introduction 26

Iterative Algorithm for Sum

Problem: Find the sum of the first num integers
stored in an array v.

sum(v[]: integer array, num: integer): integer
{

temp_sum: integer ;
temp_sum := 0;
for i = 0 to num – 1 do

temp_sum := v[i] + temp_sum;
return temp_sum;

}

Sep 26, 2007 CSE 373 au07 - Introduction 27

Programming via Recursion

Problem: Write a recursive function to find the sum
of the first num integers stored in array v.

sum (v[]: integer array, num: integer): integer
{

if num = 0 then
return 0

else
return v[num-1] + sum(v,num-1);

}

base case

recursive
case

Sep 26, 2007 CSE 373 au07 - Introduction 28

Pseudocode

Algorithms will (often) be presented in “pseudocode”

› Common in the computer science literature
› Easy to translate to real code
› Independent of particular programming language
› Informal but precise: there is no “official” language

definition for pseudocode

Sep 26, 2007 CSE 373 au07 - Introduction 29

Proof by Induction

• Basis Step
› The algorithm is correct for a base case or two by

inspection

• Inductive Hypothesis (n=k)
› Assume that the algorithm works correctly for the first

k cases, for any k

• Inductive Step (n=k+1)
› Given the hypothesis above, show that the k+1 case

will be calculated correctly

Sep 26, 2007 CSE 373 au07 - Introduction 30

Program Correctness by Induction

• Basis Step
› sum(v,0) = 0

• Inductive Hypothesis (n=k)
› Assume sum(v,k) correctly returns sum of first k elements of v,

i.e. v[0]+v[1]+…+v[k-1]

• Inductive Step (n=k+1)
› sum(v,n) returns v[k]+sum(v,k) which is the sum of first k+1

elements of v.

Sep 26, 2007 CSE 373 au07 - Introduction 31

Algorithms vs. Programs

• Proving correctness of an algorithm is very
important
› a well designed algorithm is guaranteed to work

correctly and its performance can be estimated

• Proving correctness of a program (an
implementation) is fraught with weird bugs
› Abstract Data Types are a way to bridge the gap

between mathematical algorithms and programs

