
1

Graph Terminology

CSE 373
Data Structures

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

2

What are graphs?

• Yes, this is a graph….

• But we are interested in a different kind of
“graph”

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

3

Graphs

• Graphs are composed of
› Nodes (vertices)
› Edges (arcs) node

edge

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

4

Varieties

• Nodes
› Labeled or unlabeled

• Edges
› Directed or undirected
› Labeled or unlabeled

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

5

Motivation for Graphs
• Consider the data structures we have

looked at so far…

• Linked list: nodes with 1 incoming
edge + 1 outgoing edge

• Binary trees/heaps: nodes with 1
incoming edge + 2 outgoing edges

• B-trees: nodes with 1 incoming edge
+ multiple outgoing edges

10

96 99

94

97

Value Next
node

Value Next
node

3 5

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

6

A Very Regular Graph:
Mine Sweeper

2

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

7

Motivation for Graphs

• How can you generalize these data
structures?

• Consider data structures for representing
the following problems…

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

8

CSE Course Prerequisites at
UW

321143

142

322

326
341370

378

401

421Nodes = courses
Directed edge = prerequisite

373

410

413

415

417

461

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

9

Representing a Maze

S

Nodes = rooms
Edge = door or passage

S

E

B

E

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

10

Representing Electrical
Circuits

Nodes = battery, switch, resistor, etc.
Edges = connections

Battery Switch

Resistor

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

11

Program statements

x1=q+y*z
x2=y*z-q Naive:

common
subexpression

eliminated:

y z

*

-

q

+

q *

x1 x2

y z

-

q

+

q *

x1 x2

Nodes = symbols/operators
Edges = relationships

y*z calculated twice

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

12

Precedence
S1 a=0;
S2 b=1;
S3 c=a+1
S4 d=b+a;
S5 e=d+1;
S6 e=c+d;

3

1 2

6

5

4Which statements must execute before S6?
S1, S2, S3, S4

Nodes = statements
Edges = precedence requirements

3

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

13

Information Transmission in a
Computer Network

Seattle

New York

L.A.

Tokyo

Sydney

Seoul

Nodes = computers
Edges = transmission rates

128

140
181

30
16

56

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

14

The Internet

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

15

Traffic Flow on Highways

Nodes = cities
Edges = # vehicles on
connecting highway

UW

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

16

Polygonal Meshes

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

17

Isomorphism

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

18

Isomorphism

4

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

19

Bipartite Graphs

Football
Player

CSE
Nerd

Melrose Place

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

20

Duality

• Vertices become faces,
faces vertices

• Max-flow becomes
Min-cut

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

21

Planarity

Can the circuit be put onto the chip in one layer?

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

22

Planarity

Can the circuit be put onto the chip in one layer?

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

23

Planarity

Can the circuit be put onto the chip in one layer?

K_5 K_3,3

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

24

Sparsely Connected Graph

• n vertices
• worst n/2 edges between two vertices
• n edges total

5

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

25

Densely Connected Graph

• n vertices total
• worst 1 edge between two vertices
• ½(n^2-n) edges total

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

26

In Between (Hypercube)

• n vertices
• worst log n edges between two vertices
• ½ n log n edges total

001 011

000 010

101 111

100 110

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

27

0110

0000

0010
0111

0100
0011

0001 0101

In Between (Hypercube)

1000

1010

1011

1001

1110

1111

1101

1100

- 16 nodes
- worst 4 edges

btwn two nodes
-32 total edges

S: (16,8,16)
D: (16,1,120)

S: (32,16,32)
H: (32,5,80)
D: (32,1,496)

S: (64,32,64)
H: (64,6,192)
D: (64,1,2016)

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

28

Statistical Mechanics

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

29

Modeling Nonlinear Data

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

30

Neural Networks

6

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

31

Colorings

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

32

“We should mention that both our programs use only integer arithmetic, and
so we need not be concerned with round-off errors and similar dangers of
floating point arithmetic. However, an argument can be made that our ‘proof’
is not a proof in the traditional sense, because it contains steps that can
never be verified by humans. In particular, we have not proved the
correctness of the compiler we compiled our programs on, nor have we
proved the infallibility of the hardware we ran our programs on. These have to
be taken on faith, and are conceivably a source of error. However, from a
practical point of view, the chance of a computer error that appears
consistently in exactly the same way on all runs of our programs on all the
compilers under all the operating systems that our programs run on is
infinitesimally small compared to the chance of a human error during the
same amount of case-checking. Apart from this hypothetical possibility of a
computer consistently giving an incorrect answer, the rest of our proof can be
verified in the same way as traditional mathematical proofs. We concede,
however, that verifying a computer program is much more difficult than
checking a mathematical proof of the same length.”

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

33

Graph Definition

• A graph is simply a collection of nodes plus
edges
› Linked lists, trees, and heaps are all special cases

of graphs
• The nodes are known as vertices (node =

“vertex”)
• Formal Definition: A graph G is a pair (V, E)

where
› V is a set of vertices or nodes
› E is a set of edges that connect vertices

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

34

Graph Example
• Here is a directed graph G = (V, E)

› Each edge is a pair (v1, v2), where v1, v2 are vertices
in V

› V = {A, B, C, D, E, F}
E = {(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)}

A

B
C

ED
F

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

35

Directed vs Undirected
Graphs

• If the order of edge pairs (v1, v2) matters, the graph is
directed (also called a digraph): (v1, v2) ≠ (v2, v1)

• If the order of edge pairs (v1, v2) does not matter, the
graph is called an undirected graph: in this case, (v1,
v2) = (v2, v1)

v1
v2

v1 v2

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

36

Undirected Terminology
• Two vertices u and v are adjacent in an undirected

graph G if {u,v} is an edge in G
› edge e = {u,v} is incident with vertex u and vertex v
› Some undirected graphs allow “self loops”. These will need

slightly different notation, because {u,u} = {u}. Therefore,
use [u,v] and [u,u] to represent the edges of such graphs.

• The degree of a vertex in an undirected graph is the
number of edges incident with it
› a self-loop counts twice (both ends count)
› denoted with deg(v)

7

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

37

Undirected Graph Terminology

A

B
C

ED
F

Degree = 3
Degree = 0

B is adjacent to C and C is adjacent to BEdge [A,B] is incident
to A and to B

Self-loop

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

38

Directed Graph Terminology

• Vertex u is adjacent to vertex v in a directed
graph G if (u,v) is an edge in G
› vertex u is the initial vertex of (u,v)

• Vertex v is adjacent from vertex u
› vertex v is the terminal (or end) vertex of (u,v)

• Degree
› in-degree is the number of edges with the vertex

as the terminal vertex
› out-degree is the number of edges with the vertex

as the initial vertex

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

39

Directed Terminology

A

B
C

ED
F

In-degree = 2
Out-degree = 1

In-degree = 0
Out-degree = 0

B adjacent to C and C adjacent from B

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

40

Handshaking Theorem

• Let G=(V,E) be an undirected graph with
|E|=e edges. Then

• Every edge contributes +1 to the degree of
each of the two vertices it is incident with
› number of edges is exactly half the sum of deg(v)
› the sum of the deg(v) values must be even

∑
∈

=
Vv
deg(v)2e Add up the degrees of all vertices.

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

41

• Space and time are analyzed in terms of:

• Number of vertices = |V| and

• Number of edges = |E|

• There are at least two ways of representing
graphs:

• The adjacency matrix representation

• The adjacency list representation

Graph Representations

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

42

A B C D E F

0 1 0 1 0 0

1 0 1 0 0 0

0 1 0 1 1 0

1 0 1 0 1 0

0 0 1 1 0 0

0 0 0 0 0 0 M(v, w) =
1 if [v, w] is in E

0 otherwise

A

B

C

D

E

F

Space = |V|2

A

B
C

ED
F

Adjacency Matrix

8

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

43

A B C D E F

0 1 0 1 0 0

0 0 1 0 0 0

0 0 0 1 1 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

A

B

C

D

E

F

Space = |V|2

M(v, w) =
1 if (v, w) is in E

0 otherwise

A

B
C

ED
F

Adjacency Matrix for a
Digraph

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

44

B D

B D

C

A C E

D

E

A C

A

B

C

D

E

F

A

B
C

ED
F

Space = a |V| + 2 b |E|

For each v in V, L(v) = list of w such that [v, w] is in E
a b

Adjacency List

list of
neighbors

2/22/2006 CSE 373 Wi 06 -- Graph
Terminology

45

B D

E

D

C

a b

A

B

C

D

E

F

E

A

B
C

ED
F

For each v in V, L(v) = list of w such that (v, w) is in E

Space = a |V| + b |E|

Adjacency List for a Digraph

A is a source
E is a sink
F is disconnected from the rest

