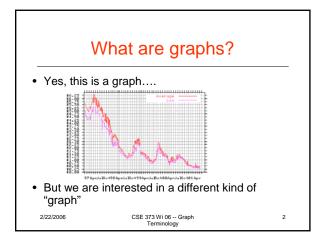
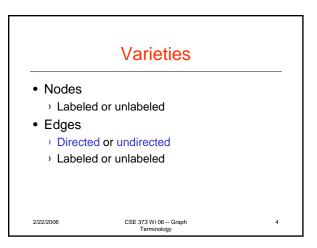
Graph Terminology

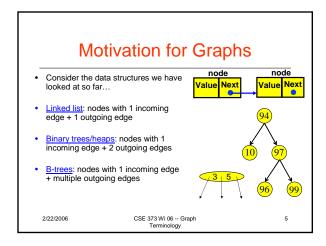
CSE 373 Data Structures

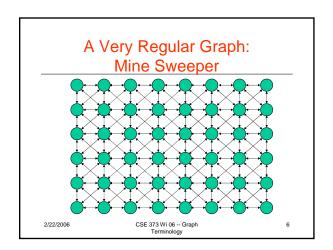


Graphs · Graphs are composed of › Nodes (vertices) > Edges (arcs) node CSE 373 Wi 06 -- Graph Terminology

2/22/2006



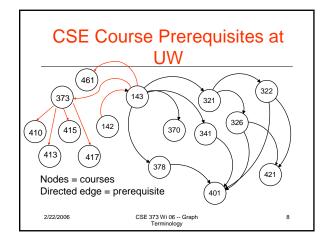


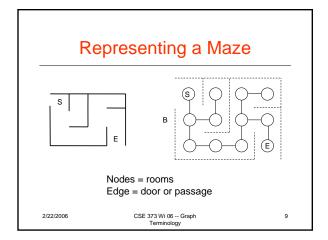


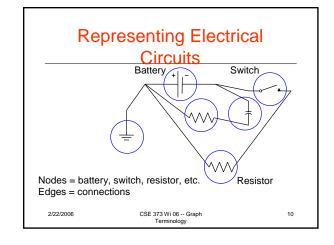
Motivation for Graphs

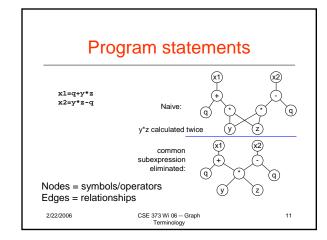
- How can you generalize these data structures?
- Consider data structures for representing the following problems...

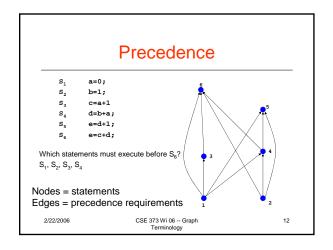
2/22/2006 CSE 373 Wi 06 -- Graph Terminology

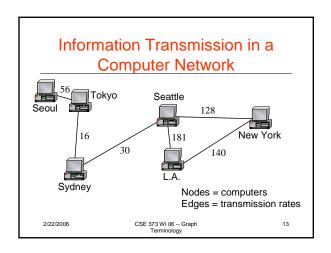


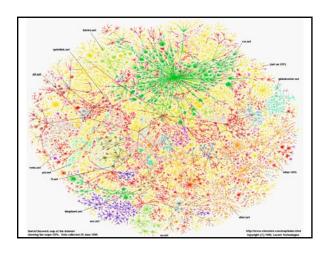


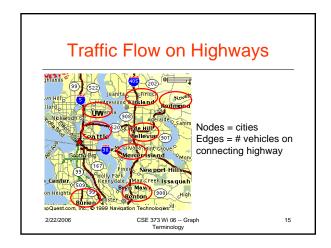


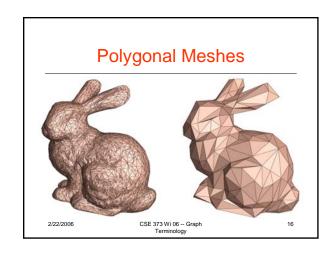


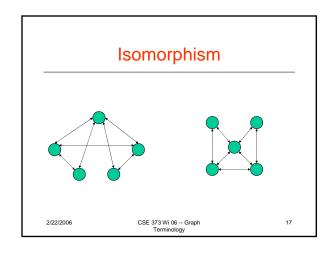


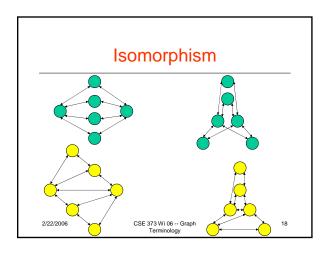


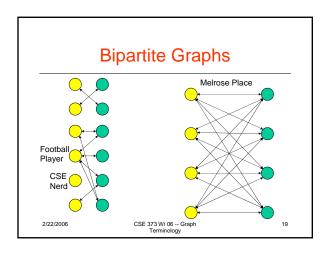


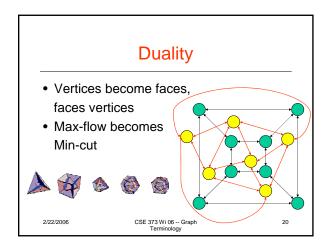


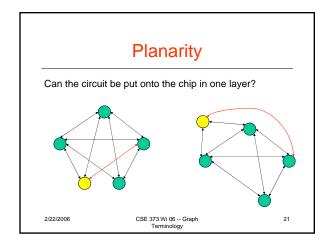


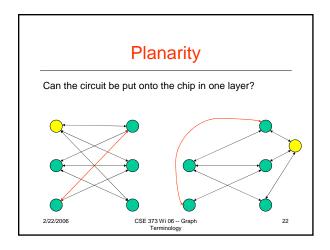


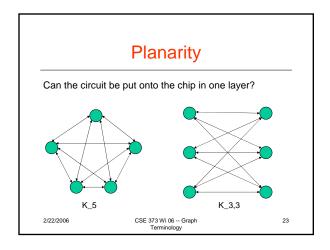


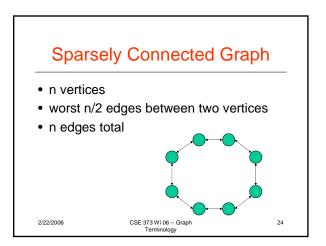




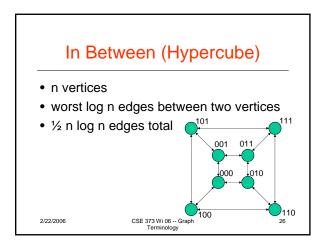


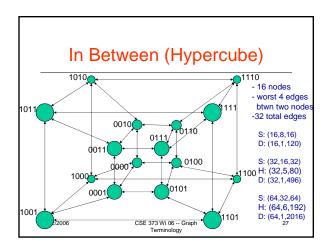


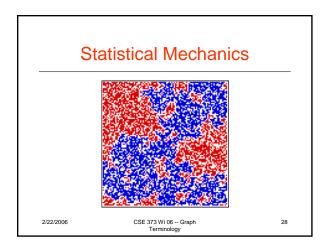


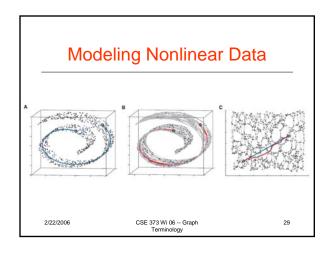


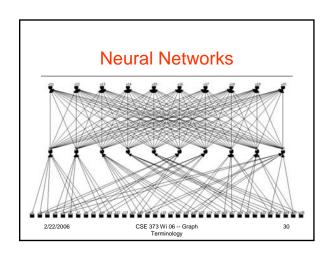
Densely Connected Graph • n vertices total • worst 1 edge between two vertices • ½(n^2-n) edges total CSE 373 Wi 06 - Graph Terminology 25

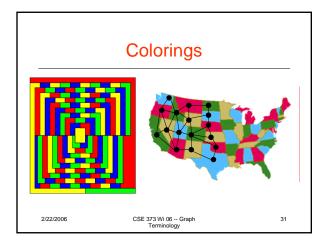












"We should mention that both our programs use only integer arithmetic, and so we need not be concerned with round-off errors and similar dangers of floating point arithmetic. However, an argument can be made that our 'proof' is not a proof in the traditional sense, because it contains steps that can never be verified by humans. In particular, we have not proved the correctness of the compiler we compiled our programs on, nor have we proved the infallibility of the hardware we ran our programs on. These have to be taken on faith, and are conceivably a source of error. However, from a practical point of view, the chance of a computer error that appears consistently in exactly the same way on all runs of our programs on all the compilers under all the operating systems that our programs run on is infinitesimally small compared to the chance of a human error during the same amount of case-checking. Apart from this hypothetical possibility of a computer consistently giving an incorrect answer, the rest of our proof can be verified in the same way as traditional mathematical proofs. We concede, however, that verifying a computer program is much more difficult than checking a mathematical proof of the same length."

2/2006 CSE 373 Wi 06 -- Graph Terminology

Graph Definition

- A graph is simply a collection of nodes plus edges
 - Linked lists, trees, and heaps are all special cases of graphs

33

35

- The nodes are known as vertices (node = "vertex")
- Formal Definition: A graph G is a pair (V, E) where
 - > V is a set of vertices or nodes
 - > E is a set of edges that connect vertices

2/22/2006 CSE 373 Wi 06 -- Graph Terminology

• Here is a directed graph G = (V, E)• Each edge is a pair (v_1, v_2) , where v_1, v_2 are vertices in V• $V = \{A, B, C, D, E, F\}$ • $E = \{(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)\}$ • CSE 373 Wi 06 -- Graph Terminology

Directed vs Undirected Graphs

 If the order of edge pairs (v₁, v₂) matters, the graph is directed (also called a digraph): (v₁, v₂) ≠ (v₂, v₁)

If the order of edge pairs (v₁, v₂) does not matter, the graph is called an undirected graph: in this case, (v₁, v₂) = (v₂, v₁)

2/22/2006

CSE 373 Wi 06 -- Graph Terminology

Undirected Terminology

- Two vertices u and v are adjacent in an undirected graph G if {u,v} is an edge in G
 - edge e = {u,v} is incident with vertex u and vertex v
 - Some undirected graphs allow "self loops". These will need slightly different notation, because {u,u} = {u}. Therefore, use [u,v] and [u,u] to represent the edges of such graphs.
- The degree of a vertex in an undirected graph is the number of edges incident with it
 - › a self-loop counts twice (both ends count)
 - denoted with deg(v)

2/22/2006

CSE 373 Wi 06 -- Graph Terminology

-- Graph 36 gv

Undirected Graph Terminology Edge [A,B] is incident to A and to B B is adjacent to C and C is adjacent to B C Self-loop F Degree = 0 CSE 373 Wi 06 -- Graph Terminology 37

Directed Graph Terminology

- Vertex u is adjacent to vertex v in a directed graph G if (u,v) is an edge in G
 - > vertex u is the initial vertex of (u,v)
- Vertex v is adjacent from vertex u
 - vertex v is the terminal (or end) vertex of (u,v)
- Degree
 - in-degree is the number of edges with the vertex as the terminal vertex
 - out-degree is the number of edges with the vertex as the initial vertex

2/22/2006

CSE 373 Wi 06 -- Graph Terminology

B adjacent to C and C adjacent from B

B

In-degree = 2
Out-degree = 1

CSE 373 Wi 06 -- Graph Terminology

Directed Terminology

B adjacent to C and C adjacent from B

In-degree = 0
Out-degree = 0
Out-degree = 3

Handshaking Theorem

 Let G=(V,E) be an undirected graph with |E|=e edges. Then

 $2e = \sum_{v \in V} deg(v)$

Add up the degrees of all vertices.

40

- Every edge contributes +1 to the degree of each of the two vertices it is incident with
 - > number of edges is exactly half the sum of deg(v)
 - > the sum of the deg(v) values must be even

2/22/2006

CSE 373 Wi 06 -- Graph Terminology

Graph Representations

- · Space and time are analyzed in terms of:
 - Number of vertices = |V| and
 - Number of edges = |E|
- There are at least two ways of representing graphs:
 - The adjacency matrix representation
 - The adjacency list representation

2/22/2006

CSE 373 Wi 06 -- Graph Terminology 41

