
 CSE 373 Midterm 1 1/30/06 Sample Solution

 Page 1 of 7

Question 1. (10 points) (a) Define what it means to say that a function f(n) is O(g(n)).
(i.e., give the mathematical definition as described in lecture and in the textbook.)

Function f(n) is O(g(n) if there is a constant c and an integer n0 such that
f(n) ≤ c g(n) for all n ≥ n0

(b) Use the definition from part (a) to prove that 3n + 2n2 + 12 is O(n2).

Pick c = 3 (or any number greater than 2). Then for all n ≥ 6 (or any larger value of
n), 3n + 2n2 + 12 ≤ 3n2.

Question 2. (8 points) Adding a new item to an array-based list normally takes constant
time (O(1)), except when the existing array is filled to capacity. In that case we need to
allocate a new larger array, copy the existing items from the old array to the new one,
then add the new item. The time needed to add an item to the list in this case requires
time proportional to the number of items in the list (O(n)).

In class, and in the book, we argued that the total time needed to add n items to an array-
based list was O(n), if, whenever we need to expand the array, we allocated a new one
that is twice the length of the old one. In other words, with this strategy the amortized
time needed to add each item was O(1).

Another strategy would be to allocate a new array that is only one element larger than the
old one whenever the existing array is filled to capacity. For this problem, show that if
we only increase the size of the array by 1 each time we need to expand it, then the total
time needed to add n items to the list is O(n2).

Once the initial capacity of the array, say k, has been used, each addition to the list
requires allocating a new array and copying all of the existing entries. So the total
work needed is proportional to k (for the first k entries) then k+1, k+2, …, n, for the
remaining n-k entriees. The sum k + (k+1) + (k+2) + … + n is proportional to n2, so
the total work needed to add n items to the list using the “increase by 1” strategy is
O(n2).

 CSE 373 Midterm 1 1/30/06 Sample Solution

 Page 2 of 7

Question 3. (6 points) Recall from lecture and from the book that the operations on a
queue data structure can include:

• enqueue(item) – add item to the rear of the queue
• dequeue() – remove and return the front item in the queue.
• front() – return the front item from the queue but do not remove it
• isEmpty() – return true if the queue is empty
• size() – return the number of items currently in the queue

Write down the output that is printed by System.out.println when the following
code is executed. You should assume that the queue is initially empty. Also assume that
the queue Q stores and returns Strings, so that no casts or other type conversions are
needed for this code to compile and run properly. Hint: as you work on the problem,
draw a picture to keep track of the contents of the queue.

 Q.enqueue("Sleepy");

 Q.enqueue("Grumpy");

 Q.enqueue("Sneezy");

 System.out.println(Q.front());

 System.out.println(Q.size());

 Q.enqueue("Happy");

 String s1 = Q.dequeue();

 Q.enqueue("Dopey");

 String s2 = Q.dequeue();

 System.out.println(s2);

 System.out.println(Q.size());

 Q.enqueue("Bashfull");

 String s3 = Q.dequeue();

 System.out.println(s3);

 System.out.println(Q.size());

Output produced by System.out.println:

 Sleepy
 3
 Grumpy
 3
 Sneezy
 3

(For movie trivia fans – but not for any extra credit – What is the name of the 7th dwarf?)
Doc

 CSE 373 Midterm 1 1/30/06 Sample Solution

 Page 3 of 7

Question 4. (6 points) Draw a diagram of the binary search tree (BST) that results
when the following numbers are added to the tree in the given order without any
additional balancing or rearranging of the nodes in the tree.

 35 12 7 9 42 373 211 15

 35

 12 42

 7 15 373

 9 211

 CSE 373 Midterm 1 1/30/06 Sample Solution

 Page 4 of 7

Question 5. (6 points) An application of binary trees (not binary search trees) is to
provide a data structure to represent arithmetic expressions in programs like compilers or
symbolic mathematics packages like Mathematica or Matlab.

For example, here is a binary tree representing the expression x + (a + b) * r + z. In this
tree, each operator and operand is represented by a node, and each operator node has
children that represent its operands.

(a) Write down the order in which the nodes of the above tree are encountered by an
inorder traversal of the tree. Include all of the nodes, both operators and operands.

 x + a + b * r + z

(b) Write down the order in which the nodes of the above tree are encountered by a
postorder traversal of the tree. Include all of the nodes, both operators and operands.

 x a b + r * + z +

+

+

x *

z

+ r

a b

 CSE 373 Midterm 1 1/30/06 Sample Solution

 Page 5 of 7

Question 6. (12 points) One of the methods we did not implement in our linked-list
classes is a method to add an item to the list at a particular location given a reference to
the link at that location. For this problem, your are to implement method add(item,p)
to add item to a double-linked list just before the node referenced by p.

Details: Assume that the links in the list are represented as follows:

 class DLink {
 public Object item; // item referred to by this link
 public DLink next; // next link in the list; null if none
 public DLink prev; // previous link; null if none

 /** construct new link given item, next, and previous */
 public DLink (Object item, DLink next, DLink prev) { ... }
 }

You should assume that these three instance variables only are available and should be
used as needed:

 private DLink head; // first link or null if empty list
 private DLink tail; // last link or null if empty list
 private int size; // number of links in the list

There are no extra header or trailer nodes in the list. Complete the definition of method
add, below. You may assume that p is not null and refers to a link in the list.

 /** Add item to the list immediately before link p ... */
 public void add(Object item, DLink p) {

 DLink q = new DLink(item, p, p.prev);

 if (p == head) {
 head = q; // new link at head of list
 } else {
 p.prev.next = q; // new link in middle of list
 }

 p.prev = q;
 size++;

 }

 CSE 373 Midterm 1 1/30/06 Sample Solution

 Page 6 of 7

The following two questions refer to sorted sets implemented with binary search trees, as
in homework 3. Recall that the operations available on a set include the following

• add(item) – add item to the set if not already present.
• contains(item) – return true if the set contains item; false if not
• size() – return the number of items in the set
• remove(item) – remove item from the set if present

Question 7. (10 points) Complete the following JUnit test to verify that the operations in
the test work properly. Recall that JUnit includes methods names assertEquals,
assertTrue, assertFalse, assertNull, assertNotNull, and fail, among
others. Your test only needs to verify properties of the set that can be observed with the
above functions at the blank places below where there is room to add code. You don’t
need to add tests between the lines of code in the rest of the test.

 // check set operations after adding and deleting a few items
 public void testAddRemoveEtc() {
 private BasicSet s = new BasicOrderedTreeSet();
 s.add("Mickey");
 s.add("Michael");
 s.add("Donald");
 // add any appropriate tests below

 assertTrue(s.contains("Mickey"));
 assertTrue(s.contains("Michael"));
 assertTrue(s.contains("Donald"));
 assertFalse(s.contains("Steven"));
 assertEquals(3, s.size());

 s.remove("Michael");
 s.add("Steven");
 // add any appropriate tests below

 assertTrue(s.contains("Mickey"));
 assertTrue(s.contains("Steven"));
 assertTrue(s.contains("Donald"));
 assertFalse(s.contains("Michael"));
 assertEquals(3, s.size());

 }

 CSE 373 Midterm 1 1/30/06 Sample Solution

 Page 7 of 7

Question 8. (12 points) Several of the Java collection classes provide methods to return
a copy of the collection as a list. For this question, implement a method toList() for
BasicOrderedTreeSet that does this. The items in the list should be stored in
increasing order.

Details: Assume that the set is represented using a binary search tree whose nodes are
defined as follows:

 class BSTNode {
 public Comparable item; // item referred to by this node
 public BSTNode left; // left subtree; null if none
 public BSTNode right; // right subtree; null if none
 ...
 }

The BasicOrderedTreeSet contains only the following instance variable:

 private BSTNode root; // root of the tree or null if the
 // set (tree) is empty

Complete the definition of the method toList below. You may define additional
methods if you find them helpful. Restriction: You may not use any additional methods
belonging to the BasicOrderedTreeSet. In particular, you may not use an iterator to
solve the problem.

Hints: An inorder tree traversal might be useful. Use an ArrayList or LinkedList to
accumulate the result, and recall that these lists include an add(…) method to add new
items to the end of a list.

 /** Return the contents of this set as an ordered list */
 public List toList() {

 ArrayList values = new ArrayList();
 addSubtree(root, values);
 return values;

 }

 // add contents of subtree with root r to values in order
 private void addSubtree(BSTNode r, List values) {
 if (r == null) {
 return;
 }

 addSubtree(r.left, values);
 values.add(r.item);
 addSubtree(r.right, values);
 }

