
 CSE 373 Final Exam   3/14/06  Sample Solution 

  Page 1 of 10 

Question 1.  (6 points)  A priority queue is a data structure that supports storing a set of 
values, each of which has an associated key.  Each key-value pair is an entry in the 
priority queue.  The basic operations on a priority queue are: 
 

• insert(k, v) – insert value v with key k into the priority queue 
• removeMin() – return and remove from the priority queue the entry with the 

smallest key 
 
Other operations on the priority queue include size(), which returns the number of 
entries in the queue and isEmpty() which returns true if the queue is empty and false 
otherwise. 
 
Two simple implementations of a priority queue are an unsorted list, where new entries 
are added at the end of the list, and a sorted list, where entries in the list are sorted by 
their key values. 
 
Fill in the following table to give the running times of the priority queue operations for 
these two implementations using O() notation.  You should assume that the 
implementation is reasonably well done, for example, not performing expensive 
computations when a value can be stored in an instance variable and be used as needed. 
 

Operation Unsorted List Sorted List 

size, isEmpty O(1) O(1) 

insert O(1) O(n) 

removeMin O(n) O(1) 

 
 
 
Question 2.  (12 points)  In this course we’ve seen many different data structures, 
including the following: 
 

List (linked list or array) Tree 
2-dimensional (or higher) array Binary search tree 
Stack Undirected graph 
Queue Directed graph 
Hash table Directed Acyclic Graph (DAG – a 

directed graph with no cycles) 
 
For each of the following applications, indicate which of these data structures would be 
most suitable and give a brief justification for your choice.  For data structures like trees 
and graphs, describe what information is stored in the vertices and edges, and, if the 
edges are weighted, describe what information is stored in the weights. 
 
(Question continued on the next page) 



 CSE 373 Final Exam   3/14/06  Sample Solution 

  Page 2 of 10 

Question 2.  (cont.)  Describe the most appropriate data structure from the list on the 
previous page, with details about vertices and edges where appropriate. 
 
(a) Map of the Puget Sound highway system used to display traffic travel times on a web 
page.  The map displays principle cities, intersections, and major landmarks, the roads 
that connect them, and the travel times between them along those roads.  Travel times 
along the same road may be different in different directions.  A directed graph.  
Vertices = cities, intersections, landmarks, etc.  A pair of directed edges between 
each pair of connected nodes, each edge giving the travel time in one of the two 
directions. 
 
(b) Chess board – an 8 x 8 board used for a game of chess.  Each square on the board is 
either empty or contains a chess piece.  A 2-D array or similar structure.  (Note: an 
array of boolean values is not sufficient, since it’s not enough just to indicate that a 
square is empty or occupied.  It’s also necessary to know what color piece is on each 
square and what sort of piece it is.) 
 
(c) A computer model showing the dependencies between the steps needed to assemble a 
B787 airplane at Boeing’s Everett plant.  A DAG.  Vertices = job steps that need to be 
done.  Edge from each step to successor steps that depend directly on it.  (Note: the 
graph had better not have any cycles, otherwise it would not be possible to finish 
building the plane!) 
 
(d) A list of the legal words in a Scrabble©®™ game.  We want to be able to quickly check 
whether words used by players do, in fact, exist in the list.  A hash table.  Provides O(1) 
lookup for words.  (Note: A binary search tree would be better than, say, an 
unsorted list, but that would still require more time to search for words.) 
 
(e) Description of the inheritance relationships between classes and interfaces in a Java 
program.  A DAG.  Vertices = classes and interfaces.  Directed edge from each 
class/interface to every other class/interface that it directly implements or extends.  
(Note: A tree would be sufficient to model class inheritance only, but a more general 
graph is needed to handle interface relationships.) 
 
(f) The history list recording sites visited by the user of a web browser.  As new sites are 
visited they are added to the list.  The list also supports the operation of going back to the 
web page that was previously visited before the current page and going forward to the 
next page visited.   Either a list or a pair of stacks (one stack for “past” history, the 
other for “future” history if we’ve already backed up and want to be able to go 
forward again). 



 CSE 373 Final Exam   3/14/06  Sample Solution 

  Page 3 of 10 

Question 3.  (12 points)  The nodes in an integer binary tree can be represented by the 
following data structure. 
 
 public class BTNode { // Binary tree node 
  public int item;  // data in this node 
  public BTNode left; // left subtree or null if none 
  public BTNode right; // right subtree or null if none 
 } 
 
Complete the definition of method BFS below to perform a breadth-first traversal of a 
binary tree and print the node data values in the order they are reached during the search. 
 
In your solution, you may create and use instances of other standard data structures (lists, 
queues, stacks, trees, hash tables, graphs, or whatever) and their operations if they are 
useful, without having to give details of their implementations. 
 
 // Perform a breadth-first traversal of the binary tree with 
 // root r and print the node values as they are encountered 
 public void BFS(BTNode r) { 
 
  Queue q = new Queue(); 
  
  // Assumption in this solution: null is never placed in 
  // the queue 
 
  if (r != null) { 
   q.enqueue(r); 
  } 
 
  while (!q.isEmpty()) { 
   BTNode n = (BTNode) q.dequeue(); 
   print(n.item); 
   if (n.left != null) { 
    q.enqueue(n.left); 
   } 
   if (n.right != null) { 
    q.enqueue(n.right); 
   } 
  } 
 
 } 
 
Note: In grading this problem, we were looking for fairly precise code or pseudo-
code, but didn’t count off for minor things, like a missing cast when a node was 
extracted from the queue. 
 
 



 CSE 373 Final Exam   3/14/06  Sample Solution 

  Page 4 of 10 

Question 4.  (10 points)  Here is an adjacency list representation of a directed graph 
where there are no weights assigned to the edges). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a)  Draw a picture of the directed graph that has the above adjacency list representation. 
 
 
 
 
 
 
 
 
 
 
 
(b) Another way to represent a graph is an adjacency matrix.  Draw the adjacency matrix 
for this graph. 
 

 
 A B C D 

A 0 1 1 1 
B 1 0 0 0 
C 0 1 0 1 
D 0 0 0 0 

 
 
 
 
 

A 

B 

C 

D 

B    C    D    

A    

B    D    

A C 

B 

D 



 CSE 373 Final Exam   3/14/06  Sample Solution 

  Page 5 of 10 

Question 5.  (12 points)  Consider the following directed graph. 
 
 
 
 
 
 
 
 
 
 
We want to use Dijkstra’s algorithm to determine the shortest path from vertex 1 to each 
of the other vertices.  Update the entries in the following table to indicate the current 
shortest known distance and predecessor vertex on the path from vertex 1 to each vertex 
as the algorithm progresses. (Cross out old entries when you add new ones.)  The initial 
values for the distances are given for you.  Below the table, list the vertices in the order 
that they are added to the “cloud” of known vertices as the algorithm is executed. 
 
Vertex D (distance from vertex 1) Predecessor vertex 

1 0 --- 

2  ∞   2  ?   1 

3  ∞    7   4  ?    2   4 

4  ∞    3  ?    1 

5  ∞    5  ?    2 

6  ∞    6  ?    3 

 
 
List of vertices in the order they are processed by the algorithm: 
 
 
    1    ,  ___2____ ,  ___4____ ,  ___3____ ,  ___5____ ,  ___6____ 
 

1 2 3 6 

5 

4 

2 5 2 

3 4 

3 1 



 CSE 373 Final Exam   3/14/06  Sample Solution 

  Page 6 of 10 

Question 6. (4 points)  If |V| is the number of vertices in the directed graph, and |E| is the 
number of edges, what is the running time of Dijkstra’s algorithm in O() notation?  Give 
a brief justification for your answer.  You should also briefly describe any assumptions 
you are making about the implementation that would affect the answer. 
 
Dijkstra’s algorithm is a bit more complicated to analyze than some because we 
need to think about some of the implementation details.  If we use an adjacency list 
to represent the graph we can step through the vertices connected to any particular 
vertex in time proportional to the number of connected vertices.  An efficient 
implementation of the priority queue would allow us to extract the min value in 
O(log n) time, and if the entries are location-aware, they can also be updated in 
O(log n).  If we look at the total number of times these operations are performed, we 
get a total running time of O((|V| + |E|) log n). 
 
 
 
 
 
Question 7.  (4 points)  A topological sort of a directed acyclic graph (a graph without 
cycles) yields a list of vertices such that if there is a path from vertex i to vertex j, then i 
precedes j in the topological sort.  In O() notation, what is the running time of a 
topological sort on a graph with |V| vertices and |E| edges?  Give a brief but precise 
explanation justifying your answer. 
 
During a topological sort, each vertex and its adjacent edges are removed from the 
list of unprocessed vertices and edges once, and not considered again.  That gives a 
total running time of O(|V| + |E|).



 CSE 373 Final Exam   3/14/06  Sample Solution 

  Page 7 of 10 

Question 8.  (8 points)  (Sorting) 
 
(a)  Two of the most common divide-and-conquer sorting algorithms are quicksort and 
mergesort.  In practice quicksort is often used for sorting data in main storage rather than 
mergesort.  Give a reason why quicksort is likely to be the preferred sorting algorithm for 
this application. 
 
As long as the pivots for quicksort are chosen carefully (next question), both 
algorithms run in O(n log n) time, so there is no reason to prefer one over the other 
based on time.  However, mergesort requires that half of the available space be used 
to merge the two lists created when the problem is divided, so it can only sort half as 
much data in a given amount of memory. 
 
 
 
 
 
(b)  Quicksort’s worst-case running time is O(n2), but it has an expected running time of 
O(n log n) if the partition function works well.  What needs to be true about the partition 
function in order for the running time to be O(n log n)?  In practice, how can we ensure 
that this happens? 
 
The key is that the partition step must divide the section of the list to be sorted into 
two roughly equal-sized parts by picking a pivot value that is roughly the median of 
the values in that section of the list.  If this happens then the overall depth of 
recursion is bounded by O(log n) and the total running time is O(n log n). 
 
There are several ways to pick a good pivot value.  Two common ones are to pick a 
median of 5 values scattered throughout the list section (front, middle, end, and 
halfway between the middle and each end), or to randomly pick some value in the 
interval. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 CSE 373 Final Exam   3/14/06  Sample Solution 

  Page 8 of 10 

Question 9.  (12 points)  Suppose we have an array b containing n integers.  Initially the integers 
are in some random order.  We would like to rearrange the array so all the negative integers 
precede all the zeros, and the positive integers appear at the end.  In pictures, we would like to 
rearrange the contents of b so that at the end we get the following picture: 
 
 0   N 

b < 0 = 0 > 0  
 
Simply trying to hack this up is a mess (try it for 2 minutes if you are not convinced).  However if 
we draw a picture showing what the computation looks like when it is partially finished and use 
that to guide the coding, it is much more tractable.  Specifically, once we have partially, but not 
completely moved the data, the array should look like this: 
 
 0 i j k N 

b < 0 = 0 ? > 0  
 
In other words, the entries in b[0.i-1] are negative, b[i..j-1] zero, b[j..k-1] have not 
been processed, and b[k..n-1] are positive.  Some of these intervals may be empty if no 
numbers with the correct values have been found. 
 
Complete the following code to partition the array.  Hint: think about the loop body first, then 
worry about the initialization conditions.  Requirement:  The algorithm must partition the array in 
linear (O(n)) time.  You may write swap(x,y) to interchange the values of variables x and y. 
 
 //  initialize 
 
 i =  0  ; j =  0  ; k =  n  ;  
  
 // repeat until no unprocessed elements remain in b[j..k-1] 
 
 while (   j != k   ) { 
  // decrease size of b[j..k-1] by 1 by moving one or more 
  // items and adjusting i, j, and/or k 
 
  if (b[j] < 0) { 
   swap(b[i], b[j]); 
   i++; 
   j++; 
  } else if (b[j] == 0) { 
   j++; 
  } else {  // b[j] > 0 
   swap(b[j], b[k-1]); 
   k--; 
  } 
 
 } 



 CSE 373 Final Exam   3/14/06  Sample Solution 

  Page 9 of 10 

Question 10.  (12 points)  A famous problem is figuring out whether an undirected graph 
contains an Eulerian path.  Such a path contains all of the edges in the graph exactly 
once, but may pass through any of the vertices in the graph as many times as desired. 
 
The problem originated from the Bridges of Konigsberg puzzle: is it possible to walk 
through the town of Konigsberg, crossing all of the bridges in the town once and only 
once?  (Story and picture included for cultural enrichment, but feel free to ignore it and 
skip to the next paragraph if it is confusing.) 
 

 
 
This problem can be formulated as the Eulerian path problem by treating each of the 
bridges as an undirected edge in a graph, and the parts of the city as the vertices. 
 
Here is the crucial fact:  A graph contains an Eulerian path if 
 

1. It consists of just one connected component (meaning that all vertices can be 
reached from any other vertex), and 

2. It contains no more than two vertices of odd degree. 
 
On the next page is a set of data structure definitions for a Graph data type.  You should 
complete the hasEulerianPath method so it returns true if the graph parameter g has 
an Eulerian path and false if it does not. 
 
Hint: You can use breadth-first search (BFS) or depth-first search (DFS) to determine if 
the graph has a single connected component – i.e., starting at some arbitrary vertex in the 
graph all other vertices can be reached. 
 
 
 
 
 
 



 CSE 373 Final Exam   3/14/06  Sample Solution 

  Page 10 of 10 

Question 10.  (cont.)  Here are the definitions for the graph data structures 
 
public interface Graph { 
  Collection vertices();  // returns a collection of all the 
            //   Vertex objects in the graph 
  Collection edges();  // returns a collection of all the 
         //   Edge objects in the graph 
  Collection incidentEdges(Vertex v); // returns a collection of  
           //   Edges incident to v 
  boolean isAdjacent(Vertex v, Vertex w); // return true if v and 
}                 //   w are adjacent 
 
public class Vertex { 
  public boolean visited;  // initially false for all vertices 
} 
 
public class Edge { 
  Vertex v1, v2;     // undirected edge 
  Vertex opposite(Vertex v); // given a vertex return the one 
}          // at the other end of this edge 
 
Complete the method hasEulerianPath below.  You may assume that the visited 
field in each Vertex is initially false in order to check whether the graph contains a 
single connected component.  You may define additional (auxiliary) methods if you wish, 
or you can write all the code in this method.  But use comments to make it easy to figure 
out what the major parts of the code are doing. 
 
 public boolean hasEularianPath(Graph g) { 
 

   int oddDeg = 0; 
   for(Iterator i = vertices.iterator(); i.hasNext(); ) // opt. 
     ((Vertex)i.next()).visited = false;     // opt. 
   Queue q = new Queue(); 
   q.add(vertices.iterator().next()); 
   while(!q.isEmpty()) { 
     Vertex v = (Vertex)q.dequeue(); 
     if (v.visited) 
       continue; // cross-edge 
     v.visited = true; 
     if (v.incidentEdges().size() % 2 == 1) 
       oddDeg++; 
     for(Iterator i=v.incidentEdges().iterator(); i.hasNext(); ){ 
       Vertex w = ((Edge)i.next()).opposite(v); 
       if (!w.visited)   // not a back-edge 
         q.enqueue(w); 
     } 
   } 
   for(Iterator i = vertices.iterator(); i.hasNext(); ) 
     if (!((Vertex)i.next()).visited) 
       return false; 
   return oddDeg <= 2; 

 
 } 
 


